
Dawei Chen

dawei.chen24@imperial.ac.uk

The Transformer Architecture -  Trading Signal Prediction

You are a quantitative analyst tasked with building a Transformer model to predict trading signals for 
financial markets. Your goal is to develop an automated trading system that can make informed 
Long/Short/Neutral position decisions.

Your Challenge:

Analyze historical market data to predict future trading positions

Make sequential decisions where each day's position may depend on previous decisions

Handle multi-step forecasting with uncertainty quantification

Input Data:

Historical Features: T_x = 20 days of past market data for each trading sequence

Feature Types: Each day contains multiple indicators 

Data Structure: Each historical day is represented as a vector with D dimensions

Quiz 7 - Neural Networks for Interpretable
Time Series Forecasting

Name *

Email *



Target Predictions (What You Want to Predict):

Trading Signals: Position decisions for the next T_y = 5 trading days

Signal Types: For each future day, decide between:

Long position 

Short position 

Neutral: No position 

Sequential Nature: Each day's decision may influence subsequent decisions

Traditional models struggle with this problem because:

Long-term Dependencies: Today's decision might depend on patterns from weeks ago

Sequential Context: Future decisions should consider previous position choices

Multi-step Prediction: Need to predict multiple days ahead simultaneously

Attention Mechanism: Different historical periods may be relevant for different prediction 
horizons

The Transformer architecture addresses these challenges through its encoder-decoder structure with 
attention mechanisms.

The Training Data:



1 point

The number of historical time steps (lookback window) used for prediction

The number of future days to predict

The number of trading sequences in the dataset

1 point

Input features: (1000, 20, 8), Target labels: (1000, 3)

Input features: (1000, 20, 8), Target labels: (1000, 5)

Input features: (1000, 28), Target labels: (1000, 5)

In the training data, what does T_x represent?

If you have N=1000 training sequences, with T_x=20 historical days, T_y=5 prediction
days, and D=8 features per day, what are the shapes of your training tensors?



The Transformer Architecture: Teacher Forcing Approach



The Training Process: Using Teacher Forcing
Looking at the Transformer architecture diagram, we can see how teacher forcing works during the 
training process for our trading signal prediction problem.

Teacher Forcing is a training technique where the model is given the true previous outputs as input 
during training, rather than using its own predictions. This allows for efficient parallel training and 
stable learning.

The encoder processes the historical market data:

Input: Historical feature sequence [X₁¹, X₁², ..., X₁^Tx]

Processing: Through positional encoding → Multi-Head Attention → Feed Forward layers

Output: Contextual representations of the historical data

Looking at the decoder input in the diagram, we see:

Decoder Input Sequence: [Start, Y₁¹, Y₁^t, ..., Y₁^(Ty-1)]

Target Output Sequence: [Y₁¹, Y₁^t, ..., Y₁^Ty]

How Teacher Forcing Works

Step 1: Input Preparation

The decoder receives the true previous trading positions as input

For example: [Start, Long, Short, Neutral, Long]

These are the actual correct labels from the training data, not the model's predictions

Step 2: Embedding Layer

Each discrete label (Start, Long, Short, Neutral) gets converted to an embedding vector

The embedding layer maps: {Start, Long, Short, Neutral} → continuous vectors in R^d_model



Step 3: Parallel Processing

All decoder positions process simultaneously during training

Position 1 sees: [Start] → should predict Y₁¹

Position 2 sees: [Start, Y₁¹] → should predict Y₁²

Position 3 sees: [Start, Y₁¹, Y₁²] → should predict Y₁³

And so on...

Step 4: Causal Masking

The "Causal Multi-Head Attention" ensures each position only sees previous positions

This maintains the autoregressive property even during parallel training

Step 5: Cross-Attention

Each decoder position attends to ALL encoder outputs (historical market data)

This allows each trading decision to consider the full historical context

Step 6: Output Generation

Linear layer converts decoder outputs to class probabilities

Shape: (N,Ty, 3) for [Long, Short, Neutral] probabilities



1 point

It reduces the model size and memory requirements

It allows parallel processing of all decoder positions simultaneously, making training much faster
than sequential generation

It eliminates the need for attention mechanisms in the decoder

1 point

Only the final predictions are
compared to true labels:

Each prediction is compared to
its corresponding true label:

Only the first predictions are
used for loss calculation:

What is the primary advantage of using teacher forcing during training of the
Transformer decoder?

During training with teacher forcing on a batch of N_b sequences, the decoder
processes inputs and produces output predictions. How is the loss function calculated
across the entire batch?



1 point

The test input sequence has different dimensions than the training data

The attention mechanism works differently during inference than during training

We don't know the true future trading positions Y₁¹, Y₁², Y₁³, Y₁⁴ that we need as decoder input
(That's exactly what we're trying to predict!)

First Step of Inference - Diagram -

During training, to predict output sequence [Y₁¹, Y₁², Y₁³, Y₁⁴, Y₁⁵], the decoder uses input
[Start, Y₁¹, Y₁², Y₁³, Y₁⁴]. When we have a new test input sequence and want to predict
the output sequence, why is this training approach impossible during inference?



First Step of Inference in Transformer: From Historical Sequence to First Trading
Prediction
Given a new test sequence of historical market data [X¹, X², ..., X^Tx], let's trace through the first step of 
inference to generate the first trading position Y¹.
Phase 1: Encoder Processing (Done Once)

Input: Historical sequence [X¹, X², ..., X^Tx]

Each X^t represents market features for day t (prices, volume, technical indicators)

Shape: (1, Tx, D) for a single test sequence

Encoder Flow:

1. Positional Encoding: Add position information to each time step

2. Multi-Head Self-Attention: Each historical day attends to all other historical days

3. Feed Forward: Process attended representations

4. Output: Encoder representations H = [h¹, h², ..., h^Tx]

Key Point: These encoder outputs H are computed once and will be reused for all T_y prediction steps.

Phase 2: First Decoder Step

Initial Decoder Input: Only the [Start] token

The Start token gets converted to an embedding vector through the Embedding Layer

Shape: (1, 1, d_model): single sequence, single token, d_model dimensions

Decoder Processing:

1. 
Positional Encoding: Add position encoding to the Start token embedding



2. 
Causal Multi-Head Self-Attention:

Input: Only the Start token representation

Output: Self-attended Start token (trivial since there's only one token)

3. 
Cross Multi-Head Attention:

Queries (Q): From the Start token representation

Keys (K) and Values (V): From ALL encoder outputs H = [h¹, h², ..., h^Tx]

Process: The Start token attends to the entire historical sequence

Result: Context-aware representation that considers all historical market data

4. 
Feed Forward: Further processing of the attended representation

5. 
Linear Layer: Projects the final representation to class logits

Input: (1, 1, d_model)

Output: (1, 1, 3) Probability Distribution for [Long, Short, Neutral]

6. 
Decision Making:

Sampling: Apply softmax and sample according to probabilities

Greedy Decoding: Take argmax to get the most likely class

Result: First trading position P¹



What Happens in This First Step
The Attention Mechanism ?

The model essentially asks: "Given this entire market history, what should be my first trading position?"

The cross-attention mechanism allows the Start token to:

Weight the importance of different historical periods

Combine information from multiple time steps

Make an informed decision based on the full context

Result:

Prediction: P¹ ∈ {Long, Short, Neutral}

Next Input: For step 2, the decoder will use [Start, P¹]

1 point

Q = Start token representation, K = V = previous predictions

Q = Start token representation, K = V = encoder outputs from historical sequence [X¹, X², ..., X^Tx]

Q = encoder outputs, K = V = Start token

During the first step of inference, the decoder starts with only the [Start] token to predict
the first trading position P¹. In the cross-attention layer, what serves as the Queries (Q),
Keys (K), and Values (V)?



Second Step of Inference - Diagram -



Second Step of Inference in Transformer From First Prediction to Second Trading
Decision
After the first step of inference generated P¹, we now move to the second step to predict P². The 
diagram shows how the decoder input has grown from [Start] to [Start, P¹].

What We Have:

Encoder Outputs: H = [h¹, h², ..., h^Tx] (unchanged from step 1)

First Prediction: P¹ (e.g., "Long")

New Decoder Input: [Start, P¹]

Goal: Predict the second trading position P²

Growing Context:

Step 2 Input: [Start, P¹]

Each token gets converted to embeddings through the Embedding Layer

Shape: (1, 2, d_model):single sequence, two tokens, d_model dimensions

Decoder Processing

1. Positional Encoding:

Add position encodings to both Start and P¹ embeddings

Position 1: Start + PE¹

Position 2: P¹ + PE²

2. Causal Multi-Head Self-Attention:

Position 1 (Start): Can only attend to itself

Position 2 (P¹): Can attend to both Start and P¹



3. Cross Multi-Head Attention:

Queries (Q): From both decoder positions [Start, P¹]

Keys (K) and Values (V): From ALL encoder outputs H = [h¹, h², ..., h^Tx]

Process: Both positions attend to the historical market data

Key Insight: The P¹ position can now make decisions based on:

The historical market context (through cross-attention)

The previous trading decision (through self-attention)

4. Feed Forward Processing:

Apply feed-forward networks to both positions

5. Output Generation:

Linear Layer: Projects representations to class logits

Focus: Only the LAST position (position 2, corresponding to P¹) produces the next prediction

Output: Probability Distribution for P² ∈ {Long, Short, Neutral}

What's Different in Step 2 ?

Unlike step 1, the model now has:

Sequential Context: Knowledge of the first trading decision P¹

Historical Context: Still has access to all market history



Combined Decision Making: Can make P² based on both market trends AND the previous 
position

Self-Attention Impact ?

The causal self-attention allows the model to ask:
"Given that I decided to go Long yesterday (P¹), and considering all the market history, what should I do 
today (P²)?"

Key Insights
Growing Sequence Length

Step 1: Input length = 1 [Start]

Step 2: Input length = 2 [Start, P¹]

Step 3: Input length = 3 [Start, P¹, P²]

Pattern: Each step adds one more token to the context

Autoregressive Nature

Each prediction depends on ALL previous predictions:

P² depends on P¹

P³ will depend on P¹ AND P²

This creates coherent trading sequences

Result:

Prediction: P² ∈ {Long, Short, Neutral}

Next Input: For step 3, decoder will use [Start, P¹, P²]

This autoregressive process continues until all T_y positions are predicted, with each step building 
upon the previous trading decisions while maintaining access to the full historical market context.



Final Output of the Inference Process - Diagram -



Final Output of the Inference Process Complete Sequence Generation

After T_y autoregressive steps, the inference process generates the complete trading sequence:

Final Prediction Sequence: [P¹, P², P³, ..., P^T_y]

Last Step (T_y):

Decoder Input: [Start, P¹, P², ..., P^(T_y-1)]

Output: Final trading position P^T_y

Result: Complete 5-day trading strategy

Model Evaluation

Once inference is complete, we compare the model's predictions against the true labels:

Model Predictions: [P¹, P², P³, P⁴, P⁵]
True Labels: [Y¹, Y², Y³, Y⁴, Y⁵]

Evaluation Metrics:

Accuracy: How many positions match exactly (P^t = Y^t)

Sequence Accuracy: Does the entire sequence match perfectly

Position-wise Analysis: Performance by prediction horizon (day 1 vs day 5)

Key Insight: The autoregressive nature means that early prediction errors (e.g., wrong P¹) can 
compound and affect all subsequent predictions, making sequence-level evaluation crucial for 
assessing real trading performance.



1 point

Only the historical market data [X¹, X², ..., X^Tx] through the encoder outputs

Only the previous predictions [Start, P¹, P², P³] through the decoder self-attention

Both the complete historical market data [X¹, X², ..., X^Tx] (via cross-attention) AND the sequence
of previous predictions [Start, P¹, P², P³] (via causal self-attention)

1 point

Attention mask allows all positions to see each other

Causal mask prevents future information leakage

No masking is needed during inference since we're not training

Volatility Forecasting using the Temporal Fusion Transformer

The forecasting problem involves predicting future realized volatility for 31 financial stock indices. We 
need to understand the different types of information available and how they contribute to making 
accurate predictions.

Input Features: Three Types

The TFT model processes three distinct categories of input features, each providing different types of 
information:

1. Static Features

Definition: Characteristics that never change for each financial index

Properties: These remain constant throughout the entire time period

Examples:

Index category (developed markets vs. emerging markets)

Geographic region (North America, Europe, Asia)

When predicting the fourth trading position P⁴, what information does the model have
access to during inference?

During inference step 3, the decoder input is [Start, P¹, P²] and we want to predict P³.
What does the causal self-attention mask look like, and why is this masking necessary?



Market size classification

Base currency of the index

Role: Provide context about the fundamental nature of each index

2. Time-Varying Known Features

Definition: Information that changes over time but is known in advance

Properties: We can observe these values for both past and future time periods

Examples:

Calendar information (day of the week, month, holidays)

Scheduled economic announcements

Predetermined policy meetings

Known seasonal patterns

Role: Help the model understand predictable patterns and upcoming events

3. Time-Varying Unknown Features

Definition: Information that changes over time but is only available for historical periods

Properties: We can only observe these values up to the current time

Examples:

Past realized volatility values

Historical trading volumes

Market sentiment from previous days

Unexpected market events or news shocks

Role: Capture the actual market dynamics and patterns from historical data



Forecasting Goal

Primary Objective: Use all available information to predict the daily realized volatility for each of the 31 
financial indices over multiple future time periods.

What the Model Does:
The TFT model takes the three types of features and learns how to combine them optimally to generate 
accurate forecasts. It considers the unique characteristics of each index (static features), incorporates 
known future information (known features), and learns from historical market patterns (unknown 
features).

The TFT Architecture:



1 point

To generate future predictions

To dynamically select the most relevant features from static, time-varying known, and time-
varying unknown features

To visualize attention weights

What is the primary purpose of Variable Selection Networks (VSN) in the TFT
architecture?



1 point

Variable Selection Networks

Masked Multi-Head Attention

Convolutional Neural Networks (CNN)

Comments - Questions ?

This content is neither created nor endorsed by Google.

Which of the following is NOT mentioned as a component of the TFT architecture?

 Forms

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

