
2 | Introducing Sequential Models with applications in Natural

Language Processing

2.1 The Hidden Markov Model

Hidden Markov Models (HMMs) are powerful graphical models used to describe sequential data. They

were first introduced in a series of statistical papers by Leonard E. Baum (Baum & Petrie, 1966) and

other authors in the second half of the 1960s. Besides their rich mathematical structure, HMMs work

very well in a wide range of real world applications. Due to the successful results in Speech Recognition

(Rabiner & Juang, 1986), the model has become increasingly popular and has been applied to several

other areas such as natural language modeling (Manning & Schutze, 1999). There are also many applica-

tions in finance : (S. Kim, Shephard, & Chib, 1998) used HMMs for the analysis of stochastic volatility,

in comparison with the traditional GARCH model. In (Nystrup, Madsen, & Lindström, 2017), the au-

thors used the model to infer the hidden states associated with the daily returns in financial markets.

Other applications include handwriting recognition (Nag, Wong, & Fallside, 1986) and bioinformatics

(Krogh, Brown, Mian, Sjölander, & Haussler, 1994), (Durbin, Eddy, Krogh, & Mitchison, 1998), (Baldi

& Brunak, 2001), (Manogaran et al., 2018), (Testa, Hane, Ellwood, & Oliver, 2015).

HMMs can be viewed as a dynamical mixture model. Indeed, the model is a simple generalization of the

mixture model. It assumes the existence of latent variables called "hidden states", which are responsible

of the observable data. the HMM framework no longer assumes that the hidden states are chosen inde-

pendently as in vanilla mixture models. It rather assumes the latent states form an unobservable Markov

chain.

2.2 Introducing Recurrent Neural Networks

2.2.1 From Hidden Markov Models to Recurrent Neural Networks

Hidden Markov Models (HMM) have tackled the problem of modeling sequences for decades, especially

in the context of Speech Recognition (Rabiner & Juang, 1986).

HMM models were extremely popular in the 1980s for their rich mathematical structure and their good

performances in a wide range of applications. However, they rely on a Markov assumption on the tempo-

ral structure of their hidden states, making the model inefficient for modeling long range dependencies.

On the other hand, Recurrent Neural Networks, with their significantly richer memory and computational

24

Ecole des Ponts et Chaussées Hachem Madmoun

capacity, have attained state of the art performances in applications such as Speech Recognition (Graves,

Mohamed, & Hinton, 2013). The following section will introduce Recurrent Neural Networks.

2.2.2 Vanilla Recurrent Neural Networks

Feed-forward neural networks make the assumption that the data is independent and identically distri-

buted (i.i.d). Recurrent Neural Networks (RNNs) (Rumelhart, Hinton, & Williams, 1986) are a family

of neural networks capable of processing the data in a sequential way. Figure 2.1 is representation of the

vanilla RNN architecture.

FIGURE 2.1 – Vanilla RNN

The objective is to process an input sequence of D-dimensional vectors x1, . . . , xT sequentially in order

to generate a sequence of d-dimensional hidden states h1, . . . , hT . The model is parameterized by the

two matrices Wxh ∈ RD×d and Whh ∈ Rd×d

At each time step t ∈ {1, . . . , T}, there are two inputs to the hidden layer : the previous hidden state

ht−1 ∈ Rd, and the input vector at that time step xt. The former input vector is processed by the weight

matrix Whh and the latter by the weight matrix Wxh in order to produce the next hidden state ht, as

shown in equation 2.2.1

25

Ecole des Ponts et Chaussées Hachem Madmoun

∀t ∈ {1, . . . , T} ht = tanh
(
W T
hhht−1 +W T

xhxt
)

(2.2.1)

Unfortunately, it is difficult to access information from many steps back if T is too large due to problems

like vanishing or exploding gradients (Bengio, Simard, & Frasconi, 1994).

— The exploding gradient problem : This problem refers to the large increase in the gradient norm

during training. In order to overcome this issue, Thomas Mikolov introduced a simple heuris-

tic solution called gradient clipping in his PhD thesis in 2012. It consists in rescaling the gra-

dient norm, whenever it goes over a threshold. The theoretical justification was then proposed in

(Pascanu et al., 2013).

— The vanishing gradient problem : (Pascanu et al., 2013) showed that gradient signal from far

away is lost because it’s a lot smaller than the gradient signal from close-by.

To get the intuition of this issue, let us consider the example of a classification problem using an

RNN.

We recall the equation that describes the hidden states transition,

∀t ∈ {1, . . . , T} ht = σ
(
W T
hhht−1 +W T

xhxt
)

(2.2.2)

Let us consider an output layer for the classification task with K possible outputs :

ŷT = Softmax
(
W T
o hT + bo

)
(2.2.3)

Where Wo ∈ Rd×K and bo ∈ RK

Hence, the loss function J we wish to optimize is the cross entropy between the final prediction

ŷT and the true output y.

In order to optimize the loss function, we will use Backpropagation through time as explained in

(Werbos, 1990).

For that, we need to calculate ∂J(θ)
∂ht

for all t ∈ {1, . . . , T} using the Jacobian matrices (∂ht
∂ht−1

)2≤t≤T

as follows :

∀t ∈ {1, . . . , T} ∂J(θ)

∂ht
=
∂J(θ)

∂hT

∏
t<t′≤T

∂ht′

∂ht′−1

We would like to explain the vanishing gradient problem for a simple case (a linear activation

function). The proof in the general case can be found in (Pascanu et al., 2013).

26

Ecole des Ponts et Chaussées Hachem Madmoun

1. Simple case : If σ is the identity function

In that case,

∀t ∈ {1, . . . , T} ∂ht
∂ht−1

= diag
(
σ′
(
W T
hhht−1 +W T

xhxt
))
Whh

= IWhh

=Whh

And consequently, by taking the gradient of the objective function J with respect to the t-th

hidden state, we get :

∀t ∈ {1, . . . , T} ∂J(θ)

∂ht
=
∂J(θ)

∂hT

∏
t<t′≤T

∂ht′

∂ht′−1

=
∂J(θ)

∂hT
W T−t
hh

The vanishing gradient problem occurs when the matrix Whh is too "small". Let us suppose

for example that the eigen values ofWhh, denoted λ1, . . . , λM , verify : ∀i ∈ {1, . . . ,M} |λi| <

1.

Then,

∀t ∈ {1, . . . , T} ∂J(θ)

∂ht
=

M∑
m=1

cmλ
T−t
m qm (with c1, . . . , cM ∈ R)

When T − t is too large, λT−tm approaches 0, so the gradient vanishes.

2. Generalization : If σ is a non linear activation function

In (Pascanu et al., 2013), the authors generalize the result for the nonlinear activation func-

tion σ. They get the same result with a stronger assumption : The module of the eigen values

ofWhh should be smaller than a γ value, which depends on the dimensionality of the vectors

and the activation function σ.

In order to address the vanishing gradient problem, (Pascanu et al., 2013) used a regularization term to

ensure that the back-propagated gradients neither increase or decrease in magnitude. The regularization

term forces the Jacobian matrices to preserve the norm only in relevant directions.

Beyond the solutions discussed so far, new architectures based on gated activation function have been

proposed to capture long-term dependencies. The first architecture of that kind, called Long Short-Term

27

Ecole des Ponts et Chaussées Hachem Madmoun

Memory, was proposed by Hochreiter and Schmidhuber in 1997 (Hochreiter & Schmidhuber, 1997) and

then refined in (Gers et al., 2000). Hochreiter proposed an architecture using two gates, namely an input

gate and an output gate in the original LSTM paper (Hochreiter & Schmidhuber, 1997), while Gers

added a forget gate in (Gers et al., 2000). More recently, Gated recurrent units (Cho et al., 2014) were

introduced in the context of Neural Machine Translation using two gates to control the information flow

from the previous steps.

2.2.3 Long Short-Term Memory (LSTM)

Before transformers, LSTMs achieved state-of-the-art results in a wide range of tasks, including machine

translation (Sutskever, Vinyals, & Le, 2014), (Cho et al., 2014) and (Bahdanau, Cho, & Bengio, 2015),

language modeling (Sundermeyer, Schlüter, & Ney, 2012), model identification (Z. Wang et al., 2018),

time series prediction (Y. Li & Cao, 2018) and Robot Reinforcement Learning (Bakker et al., 2001)

So far, we have introduced Recurrent Neural Networks, which transition from the hidden state ht−1 to

ht using a linear transformation and a point-wise non-linearity, as described in equation 2.2.1.

Here, on step t, there is a hidden state ht and a cell state ct that stores long-term information. The core

intuition behind LSTMs is to regulate the information that is removed or added to the cell state through

different gates.

Let us dive into the concept of gate, as shown in figure 2.2a :

— The signal vector s ∈ Rd represents the information that we want to filter using the processing of

the vector f ∈ Rd.

— The processing of the vector f is done through a sigmoid layer, which consists in a linear trans-

formation parameterized by (W, b) and a point-wise non-linearity (using the sigmoid activation

function). The output of this layer is the gate vector f̃ := σ (Wf + b).

— Figure 2.2b is a representation of the sigmoid function σ : z 7→ 1
1+e−z . So, the gate vector f̃ is

composed of numbers close to zero or close to one, or somewhere in between, describing how

much of each dimension (among the d dimensions) we would like to let through.

— The final step is a point-wise multiplication between the signal s and the gate vector f̃ . As a result,

some dimensions of s are going to be multiplied by values close to 1 in f̃ , these dimensions are the

ones we would like to keep. On the other hand, some dimensions of s are going to be multiplied

by values close to 0, which are the dimensions that need to be updated.

— To get more intuition about this concept, let us suppose that the s signal represents the "memory

vector" encoding dimensions like "gender" in the context of language modeling. The gate vector f̃ ,

28

Ecole des Ponts et Chaussées Hachem Madmoun

(a) Filtering a signal using a sigmoid function and a neu-
ral network

(b) The sigmoid function

FIGURE 2.2 – The concept of gate used in LSTMs

by processing a new word, might detect a new "gender". Thus, it will filter the "gender" dimension

of the s signal so that it could be replaced with a representation of the new "gender".

As shown in figure 2.3, the LSTM architecture controls the information flow of the cell state using three

gates. Let us explain, step by step, how we transition from the couple of the previous hidden and cell

states (ht−1, Ct−1) to the new couple of hidden and cell states (ht, Ct) using the "fresh" information xt.

FIGURE 2.3 – The Long Short-Term Memory architecture

— Step (1) : Generating the new memory candidate

During this stage, we essentially combine the newly observed vector xt and the previous hidden

29

Ecole des Ponts et Chaussées Hachem Madmoun

state ht−1 to generate a new vector C̃t (eq 2.2.4), as shown in figure 2.3 part(a). Therefore, the

vector C̃t can be seen as a representation of the fresh vector xt in light of the contextual past. The

parameters involved are WC ∈ R(D+M)×M , bC ∈ RM . The activation function (tanh) pushes the

values between -1 and 1.

C̃t = tanh
(
WC [h

t−1, xt] + bC
)

(2.2.4)

where [ht−1, xt] ∈ RD+M is the concatenation of ht−1 and xt

— Step (2) : Generating the input gate vector

As shown in figure 2.3 part(b), we use the xt vector and ht−1 to generate the input gate vector it

(eq 2.2.5) in order to determine which dimensions of the generated C̃t are worth preserving. The

parameters involved are Wi ∈ R(D+M)×M , bi ∈ RM .

it = σ
(
Wi[h

t−1, xt] + bi
)

(2.2.5)

where σ stands for the sigmoid function

— Step (3) : Filtering the new candidate using the input gate

We use the input gate vector it to filter the new candidate C̃t, which results in the point-wise

multiplication C̃t ◦ it (where ◦ stands for the Hadamard product).

— Step (4) : Generating the forget gate vector

Similarly to the input gate vector, the vectors ht−1 and xt are used to generate the forget gate

vector f t (eq 2.2.6). This time, instead of assessing the usefulness of the new generated vector C̃t

dimensions, the forget gate vector is used to filter the dimensions of the previous memory vector

Ct−1 that need to be updated.

f t = σ
(
Wf [h

t−1, xt] + bf
)

(2.2.6)

where σ stands for the sigmoid function

— Step (5) : Filtering the previous cell state using the forget gate

Similarly to Step (3), we filter the previous cell state Ct−1 using the forget fate vector f t, which

results in the point-wise multiplication Ct−1 ◦ f t.

30

Ecole des Ponts et Chaussées Hachem Madmoun

— Step (6) : Getting the final memory state

At this stage, we combine the advice of the forget gate vector f t filtering the past memory Ct−1,

and the advice of the input gate vector it filtering the new generated memory C̃t. The sum of both

results produce the final cell state Ct (eq 2.2.7).

Ct = it ◦ C̃t + f t ◦ Ct−1 (2.2.7)

— Step (7) : Generating the output gate vector

As the hidden states are used as an input to every single gate (forget, input and output gates), the

output gate vector ot makes the assessment regarding what parts of the cell state (the memory

state) Ct need to be exposed in the hidden state ht. This final step decides what parts of the

memory Ct need to be present in the hidden states ht.

ot = σ
(
Wo[h

t−1, xt] + bo
)

(2.2.8)

where σ stands for the sigmoid function

— Step (8) : Getting the final hidden state

At this stage, we use the ot vector to gate the point-wise tanh of the memory vector Ct, which

results in the final hidden state ht (eq 2.2.9). Moreover, at each time step t, we have the possibility

to output the hidden state ht to represent the processing of the first t input vectors x1, . . . , xt.

ht = ot ◦ tanh(Ct) (2.2.9)

To sum up, the LSTM architecture can write, erase or read information from the cell state. For each of

these actions, the LSTM makes use of gates to decide which dimensions to modify. All the equations

involved in the LSTM architecture are then summarized as follows :

— Erasing the content of the previous cell state using the forget gate f t = σ
(
Wf [h

t−1, xt] + bf
)
,

which results in f t ◦ Ct−1.

— Writing new content to the cell state, using the input gate it = σ
(
Wi[h

t−1, xt] + bi
)
, which

results in it ◦ tanh(C̃t)

— Reading some content from the cell state Ct = f t ◦Ct−1 + it ◦ tanh(C̃t) using the output gate

ot = σ
(
Wo[h

t−1, xt] + bo
)
, which results in the hidden state ht = ot ◦ tanh(Ct)

31

Ecole des Ponts et Chaussées Hachem Madmoun

It’s worth noticing that all the weight matricesWC ,Wf ,Wo,Wi are applied to the concatenation of ht−1

and xt.

Let us consider a couple of parameters (W, b) ∈ {(WC , bC), (Wi, bi), (Wf , bf), (Wo, bo)} and an acti-

vation function σ (sigmoid or tanh). As (W, b) ∈ R(M+D)×M × RM , we can rewrite W as
[
U V

]
with U ∈ RM×M and V ∈ RD×M , which leads to the following equation :

σ
(
W [ht−1, xt] + b

)
= σ

(
Uht−1 + V xt + b

)
(2.2.10)

The LSTM architecture doesn’t guarantee to solve the vanishing or exploding gradient problems. Ho-

wever, it ensures the model to learn long-distance dependencies by preserving the information in the

cell state. Indeed, the information in a particular dimension is preserved if the forget gate vector and

the input gate vector are respectively set to 1 and 0 for this particular dimension. It’s much harder for a

vanilla RNN to learn weight matrices Whh and Wxh that preserve the information in any dimension of

the hidden states.

2.2.4 Gated Recurrent Units

The Gated Recurrent Units was introduced in 2014 (Cho et al., 2014) by Kyunghyun Cho. The GRU

structure is similar to the LSTM one, except that there isn’t any cell state and it only contains 2 gates.

Let us dive into the GRU architecture, represented in figure 2.4

FIGURE 2.4 – The Gated Recurrent Units architecture

— Step (1) : Generating the reset gate vector

The objective of the reset gate vector (eq 2.2.11) is to determine which dimensions of the previous

32

Ecole des Ponts et Chaussées Hachem Madmoun

hidden state ht−1 are relevant to the computation of the new memory candidate. Similarly to the

LSTM gates, it is computed by processing the previous hidden state ht−1 and the newly observed

vector xt, in the reduced way described in equation 2.2.10.

rt = σ
(
Urh

t−1 + Vrx
t
)

(2.2.11)

where σ stands for the sigmoid function

— Step(2) : Generating the new memory candidate

This stage is analogous to the memory generation in the LSTM architecture. The new candidate

h̃t is obtained by combining the information from the newly observed vector xt and the filtered

version of the previous hidden state using the reset gate vector rt. A point-wise tanh is then

applied to push the values between -1 and 1 (eq 2.2.12).

h̃t = tanh
(
rt ◦ Uhht−1 + Vhx

t
)

(2.2.12)

where ◦ stands for the Hadamard product.

— Step (3) : Generating the update gate vector

The update gate vector zt is responsible for balancing between the information from the previous

hidden state ht−1 and the information from the new memory candidate h̃t. The vector is calculated

using the previous hidden state ht−1 and the newly observed vector xt using the parameters Uz, Vz

(eq 2.2.13)

zt = σ
(
Uzh

t−1 + Vzx
t
)

(2.2.13)

where σ stands for the sigmoid function

— Step (4) : Getting the final hidden state

The final hidden state ht is generated using the update gate vector zt. As showed in equation

2.2.14, if a particular dimension of zt is close to 1, it means that almost all the information from

the previous hidden state is copied out to ht. Conversely, if it’s close to 0, it means that the

information from h̃t should be carried forward to ht.

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (2.2.14)

33

Ecole des Ponts et Chaussées Hachem Madmoun

2.2.5 Different applications of RNNs

With the LSTM or the GRU model, we have discussed how to learn a mapping from the input space X

into the hidden spaceH.

This framework can support three types of applications, corresponding to the fact that at least one of the

spaces X andH encodes sequences.

— The One to Many application : It consists in learning mapping functions of the form Φθ : X ∈

X = RD 7→ (h1i , . . . , h
T
i) ∈ H = RT×d using the LSTM/GRU model Eθ as shown in figure

2.5. Image captioning (Vinyals, Toshev, Bengio, & Erhan, 2015) is a typical example, where the

description of an image is generated. An image is mapped into a feature vector, which in turn

becomes the input for an LSTM architecture.

FIGURE 2.5 – The Vector to Sequence framework

— The Many to One application : It consists in learning mapping functions of the form Φθ :

(X1
i , . . . , X

T
i) ∈ X = RT×D 7→ hTi ∈ H = Rd using the LSTM/GRU model Eθ as shown

in figure 2.6. Sentiment Analysis (Murthy, Allu, Andhavarapu, Bagadi, & Belusonti, 2020) is a

typical example, where each sentence is mapped to the last hidden hidden state of the LSTM

layer. A final Dense layer is then used to predict the sentiment of the sentence (positive, negative

or neutral for instance).

34

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.6 – The sequence to sequence framework

— The Many to Many application : It consists in learning mapping functions of the form Φθ :

(X1
i , . . . , X

T
i) ∈ X = RT×D 7→ (h1i , . . . , h

T
i) ∈ H = RT×d using the LSTM/GRU model Eθ

as shown in figure 2.7. Part of Speech Tagging (P. Wang, Qian, Soong, He, & Zhao, 2015) is a

typical example, where the objective is to tag each word of a sentence with its "Part-of-Speech"

tag.

FIGURE 2.7 – The sequence to sequence framework

2.2.6 Applying the RNN/LSTM Model to predict the next word

Word Embeddings

The English Vocabulary contains approximately V = 13× 106 words (or tokens).

The first step in any NLP problem is to map the V tokens into a D-dimensional 1 space encoding all

semantics of the language. Each dimension is responsible of some meaning like the gender, the tense,

1. In general, D is between 50 and 300

35

Ecole des Ponts et Chaussées Hachem Madmoun

etc.

We can first represent the tokens as numbers in {1, . . . , V }. Each token is then associated with a unique

integer ∈ {1, . . . , V }.

Rather than representing the tokens by their indexes, the equivalent representation would be to represent

them as vectors of size V with 1 at the index position and zeroes in all the other positions. These vectors

are called the one hot vectors associated with the tokens.

Predicting the next word using LSTM architectures

For that, we consider a corpus composed of several documents in some language containing V pos-

sible words. Using an unsupervised model, we can map each word with a D dimensional vector called

embedding.

We would like for instance to predict the next word based on the previous T words. Therefore, we

organise the dataset in sequences of words that we would like to map to the next words.

We denote each sequence wi = (w1
i , . . . , w

T
i) ∈ [V]T (where [V] stands for {1, . . . , V }) and the label

associated with it yi ∈ [V]. So, the training data is T = {(wi, yi)}Ni=1.

The model aims at predicting the next word. Therefore, it’s going to map each sequence wi to a proba-

bility distribution ŷi ∈ ΣV over all the possible V words.

Where Σn := {y = (y1, . . . , yn) ∈ [0, 1]n such that
n∑
i=1

yi = 1}.

Figure 2.8 shows an example of a sequencewi "The students find the course", processed with a Recurrent

Neural Network in order to predict the next word "interesting".

36

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.8 – RNN for predicting the next word

Below are the details of the prediction process in figure 2.8 :

— First, the input sequence "The students find the course" is transformed into a sequence of integers

(w1
i , . . . , w

T
i), via a dictionary that maps each of the V possible words into an index in [V].

— The embedding layer is then used to turn each integer wti ∈ [V] into a D-dimensional vector

representation xti. This is done using an embedding matrix We of shape (V,D) where each row

i represents the embedding of the word of index i. There are different ways of dealing with the

embedding matrix :

— We can consider it as part of the parameters to be trained by backpropagation.

— We can choose to freeze it by using pretrained word vectors. Such embedding vectors are

trained separately on a large corpus of data using a language model.

— The sequence of hidden states (h1i , . . . , h
T
i) is then computed sequentially as follows :

∀t ∈ [T] hti = σ
(
Whh

t−1
i +Wxx

t
i

)
(2.2.15)

37

Ecole des Ponts et Chaussées Hachem Madmoun

— xti ∈ RD represents the embedding of the new word wti .

— ht−1
i ∈ RM represents the previous hidden state. The size M of the hidden states is a hyper-

parameter. We initialize the hidden states with vector of zeros (h0i = 0RM).

— The RNN layer is parameterized with two matrices : The first weight matrixWh ∈ RM×M is

used to condition the previous hidden state ht−1
i , and the second weight matrixWx ∈ RM×D

is used to condition the new embedding xti.

— σ stands for the non linear activation function. (like the sigmoid, tanh, etc).

— The choice of the activation function is also a hyperparameter.

— It’s worth noticing that the same matrices Wh and Wx are used throughout the sequential

processing.

— The final hidden state hTi ∈ RM summarizes the information of the whole sequence in M

dimensions.

— The vector hTi is then passed into a dense layer, parameterized with a weight matrixWo ∈ RV×M ,

with a softmax activation function to get the final prediction ŷi = (ŷ1i , . . . , ŷ
V
i) as follows :

∀v ∈ [V] ŷvi =
e[WohTi]v

V∑
v′=1

e[WohTi]v′

Where [Woh
T
i]v represents the v-th dimension of the V -dimensional vector Woh

T
i

— The final prediction ŷi is then compared to the true label yi.

— We usually use one hot encoding to represent the discrete random variable Yi. It consists in

encoding Yi with a random variable Ỹi = (Ỹ 1
i , . . . , Ỹ

V
i)T such that :

∀v ∈ [V] Ỹ v
i = 1{Yi=v}

We summarize the notations for an element (wi, yi) of the training data T as follows :

38

Ecole des Ponts et Chaussées Hachem Madmoun

Tensor Space Definition

wti [V] t-th word of the input sequence wi

Xt
i RD t-th embedding vector of word wti

Wh RM×M First weight matrix of the RNN layer

Wx RM×D Second weight matrix of the RNN layer

hti RM t-th hidden state of the RNN layer

Wo RV×M Weight matrix for the dense layer

ŷi ΣV Model prediction

yi [V] The true label

ỹi {0, 1}V The one-hot vector associated with the true label yi

The whole architecture can be written as follows :

— Let us denote θ = (We,Wh,Wx,Wo) the parameters of the model and fθ the function that maps

each sequence wi to the prediction ŷi.

— Thus,

ŷi = fθ(wi)

— As a result, the distribution of the label Y conditioned on the input sequence W is :

Y |W = wi ∼M (1, [fθ(wi)]1, . . . , [fθ(wi)]V)

Where :

— M(1, π1, . . . , πV) stands for the Multinomial distribution, parameterized by π = (π1, . . . , πV)

— [fθ(wi)]v represents the v-th dimension of the V -dimensional vector ŷi = fθ(wi)

The loss function can be derived from the likelihood as follows :

— The likelihood L(θ) can then be written as follows :

L(θ) =
N∏
i=1

P (Y = yi |W = wi) (since (wi, yi)i are i.i.d)

=

N∏
i=1

P
(
Ỹ = ỹi |W = wi

)
=

N∏
i=1

V∏
v=1

[[fθ(wi)]v]
ỹvi

39

Ecole des Ponts et Chaussées Hachem Madmoun

— Instead of maximizing the likelihood, we can minimize the scaled negative log likelihood. Which

gives the following loss function :

J(θ) := − 1

N
log (L(θ))

= − 1

N

N∑
i=1

V∑
v=1

ỹvi log ([fθ(wi)]v)

We can use the exact same framework to predict the next word by replacing the RNN layer with the

LSTM layer, as shown in figure 2.9.

FIGURE 2.9 – Predicting the next word using the LSTM architecture

40

Ecole des Ponts et Chaussées Hachem Madmoun

2.3 The Sequence to Sequence Framework

For Many to Many applications, the LSTM/GRU models can only be applied if the input and the output

sequences are of the same length, which can be useful for applications such as POS tagging (P. Wang

et al., 2015). However, if we want to learn a mapping Φθ from a sequence of input vectors of length Tx

into a sequence of output vectors of length Ty (where Tx ̸= Ty), we need to introduce a new framework,

composed of two steps, represented in figure 2.10.

— An encoder layer Eθe , parameterized by θe learns to map the input sequence (X1
i , . . . , X

Tx
i) ∈

RTx×Dx into the sequence of hidden states h1i , . . . , h
Tx
i .

— The last hidden state hTxi is fed into the decoder layer Dθd , parameterized by θd, as an initial

hidden state.

— Let s0i , . . . , s
Ty
i be the decoder hidden states. Thus, we have s0i = hTxi .

— The decoder layer produces the output vectors s1i , . . . , s
Ty
i .

In the sequence to sequence framework, the encoder and the decoder can be any sequential model such

as vanilla RNNs (Kombrink, Mikolov, Karafiát, & Burget, 2011) or LSTMs (Hochreiter & Schmidhuber,

1997).

41

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.10 – The sequence to sequence framework

2.3.1 Applying the Sequence to Sequence Model for Neural Machine Translation

In the previous section, we introduced how we can process a sequence of feature vectors in order to

predict a probability distribution in a classification context. The problem we are dealing with is slightly

different, in the sense that our objective is to map a sequence of feature vectors into another related

sequence. In Natural Language Processing, that would typically be the case for a translation model.

Indeed, the sequence to sequence model was first used for English-French translation (Sutskever et al.,

2014).

42

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.11 – The sequence to sequence architecture for machine translation

Figure 2.11 is a representation of such a model.

Basically, the input is a sequence of English words like "Tom was hit with a pie", that we want to

translate into the French sentence "Tom a été entarté" using an encoder decoder architecture.

The input data is then a sequence of English words wi = (w1
i , . . . , w

Tx
i) of length Tx, and the target

associated with it is a sequence of French words yi = (y1i , . . . , y
Ty
i) of length Ty.

Such a sequence to sequence model is typically composed of :

— The encoder :

The encoder compresses all the information of the input sequence into a fixed length vector as

follows :

— As usual, the first step is to map the input words (w1
i , . . . , w

Tx
i) into the embedding space of

size Dx via the embedding matrix We associated with the English vocabulary.

— The embedding vectors X1
i , . . . , X

Tx
i associated with the input words (w1

i , . . . , w
Tx
i) are

processed using an RNN model fθ1 (the GRU model for instance).

— Let hti ∈ RM represents the hidden state of the encoder at time t :

hti = fθ1
(
ht−1
i , Xt

i

)

43

Ecole des Ponts et Chaussées Hachem Madmoun

— As the final hidden state hTxi encodes all the information in the input sequence, it is going to

be used to initialize the hidden states of the decoder.

— The decoder :

The decoder is also an RNN which takes the vector hTxi and generates an output sequence (w̃1
i , . . . , w̃

Ty
i).

— Let sti represent the hidden state of the decoder at time t.

— The first hidden state of the decoder s0i is the last hidden state of the encoder hTxi .

— The first input vector X̃0
i is the embedding vector of size Dy associated with the token

of index w̃0
i "<sos>" (i.e, start of sequence). For that, we use the embedding matrix W̃e

associated with the French vocabulary.

— Each hidden state sti, at a particular time step t ∈ {1, . . . , Ty}, is transformed into a Vy-

dimensional discrete distribution ŷti (where Vy is the size of the French vocabulary) via a

feed forward neural network parameterized by Wo. Therefore, w̃ti the predicted word at time

t is the word whose index corresponds to the highest probability in ŷti ∈ Vy.

— The hidden state sti of the decoder at time t ∈ {2, . . . , Ty} is obtained by processing the

previous hidden state st−1
i and the embedding X̃t−1

i of the previous predicted word w̃t−1
i

— Let us denote θ the parameters of the model and for all t ∈ {1, . . . , Ty} ỹti the one hot

encoding vector associated with the integer yti .

— Since we have a multiclass classification problem (over Vy possible categories) at each time

step t ∈ {1, . . . , Ty}, the global loss function Ji(θ) associated with an input-ouput pair

(wi, yi) is the average of all the losses J ti (θ) associated with each time step t ∈ {1, . . . , Ty}.

Consequently :

Ji(θ) =
1

Ty

Ty∑
t=1

Vy∑
v=1

ỹti [v] log
(
ŷti [v]

)
︸ ︷︷ ︸

Jt
i (θ)

(2.3.16)

Where :

— For all t ∈ {1, . . . , Ty} and v ∈ {1, . . . , Vy} ỹti [v] stands for the v-th dimension of ỹti .

— Similarly, for all t ∈ {1, . . . , Ty} and v ∈ {1, . . . , Vy} ŷti [v] stands for the v-th di-

mension of ŷti .

— The teacher forcing strategy

As the decoder predictions are fed back into itself, the model has to predict the whole sequence

ŷ1i , . . . , ŷ
Ty
i before it compares it to the true sequence ỹ1i , . . . , ỹ

Ty
i using the loss 2.3.16.

44

Ecole des Ponts et Chaussées Hachem Madmoun

This recursive output-as-input process can result in slow convergence since a bad prediction that

occurs at the beginning of the predicted sequence is very likey to affect the rest of the predicted

sequence.

An interesting technique that is frequently used in temporal supervised learning tasks (Williams

& Zipser, 1989) to overcome this issue is to replace, during the training process, the output vector

w̃ti that is fed into the decoder at the next iteration with the true prediction yti as shown in figure

2.12. This technique is called teacher forcing since it corrects the predictions at each time step to

maximize the chances of producing better next predictions, the same way a teacher would correct

the answer of a student one step at a time.

FIGURE 2.12 – The sequence to sequence with teacher forcing architecture for machine translation

2.4 Limitations of classical models

Although Recurrent Neural networks (RNNs) and convolutional neural networks (CNNs) have been

sucessfully applied to capture non trivial relationships in complex systems, classic models only perform

the task of perception, which consists in learning a mapping between inputs and outputs. They do not

carry out sequential reasoning.

Moreover, there are two main challenges with the sequence to sequence framework using RNNs. First, by

feeding a single fixed length vector to the decoder, the encoder has to compress all the input information

in few dimensions, which leads to a loss of information. Due to this limitation, the performance of the

sequence to sequence model degrades rapidly as the length of the input sequence increases.

45

Ecole des Ponts et Chaussées Hachem Madmoun

Second, this architecture doesn’t allow model alignment between the input and the output sequences.

We would like each output sequence to selectively focus on relevant parts of the input sequence.

Let us consider a mapping from a sequence (X1
i , . . . , X

Tx
i) into a sequence (Y 1

i , . . . , Y
Ty
i). The intui-

tion of alignment is represented in figure 2.13, it shows how much of each input vector Xt′
i should be

considered when generating an output vector Y t
i , for all (t, t′) ∈ {1, . . . , Ty} × {1, . . . , Tx}.

FIGURE 2.13 – Matrix of alignment scores

To sum up, the sequence to sequence framework is not well adapted to modeling long time dependencies

and capturing the relevance between the input and the output sequences. Attention mechanisms aim at

addressing the aforementioned crucial challenges, especially in applications such as machine translation

or time series prediction.

The process of reasoning consists in combining the perception with a selective memory guiding the

process of reasoning by focusing on relevant parts of the input or the memory. That’s why neuroscientists

(Dehaene, 2012), (Deco & Rolls, 2005), (Lindsay, 2020) consider attention as a pillar of learning and

reasoning.

46

Ecole des Ponts et Chaussées Hachem Madmoun

2.5 Introducing the Attention Mechanisms in Machine Learning

2.5.1 Query-Retrieval Modeling

Attention mechanisms originate from database Query-Retrieval Problems. Consider the database repre-

sented in figure 2.14 where a query is searched through the keys in order to retrieve a value (Garcia-

Molina, Ullman, & Widom, 2000).

FIGURE 2.14 – Hard Query Retrieval Problem

Attention mechanisms can be viewed as a soft query retrieval process, where multiple keys can corres-

pond to the query, rather than only one. As a result, we need to calculate the similarity between the query

and all the keys. The sum of the values, weighted by the computed similarities is the soft-query retrieval

vector, or the attention vector.

Figure 2.15 represents the different steps involved in calculating the attention vector from a query q ∈

Rdq , a list of keys (ki)1≤i≤n ∈ Rn×dk and a list of values (vi)1≤i≤n ∈ Rn×dv

— Using an alignment function a, we calculate the similarity between the query and all the keys as

follows :

∀i ∈ {1, . . . , n} ai = a(q, ki)

— Several alignment functions have been proposed in the literature in order to get the alignment

scores (ai)1≤i≤n, as shown in table 4.1 :

47

Ecole des Ponts et Chaussées Hachem Madmoun

Function Equation References
Dot Product a(q, ki) = qTki (Luong, Pham, & Manning, s. d.)
Scaled Dot Product a(q, ki) =

qT ki√
dk

(Vaswani et al., 2017)
Luong’s

Multiplicative al. a(q, ki) = qTWki (Luong et al., s. d.)
Bahdanau’s
Additive al. a(q, ki) = vTa tanh (W1q +W2ki) (Bahdanau et al., 2017)
Feature-based a(q, ki) =W T

impact(W1ϕ1(ki) +W2ϕ2(q) + b) (Y. Li, Kaiser, Bengio, & Si, 2019)
Kernel Method a(q, ki) = ϕ(q)Tϕ(ki) (Yuan et al., 2021)

TABLE 2.1 – Alignment Functions

— The distribution function is used to map the alignment scores (ai)1≤i≤n to the attention weights

(αi)1≤i≤n. The function ensures that ∀i ∈ {1, . . . , n} αi ≥ 0 and
n∑
i=1

αi = 1.

— We usually use the softmax distribution function in order to get dense alignments as follows :

∀i ∈ {1, . . . , n} αi =
eai
n∑
j=1

eaj
(2.5.17)

— Sparse alignment 2 can be obtained by using the sparsemax (Martins & Astudillo, 2016) or the

sparse entmax (Martins et al., 2020) distribution functions.

— The attention vector A (q, (ki)1≤i≤n, (vi)1≤i≤n) is then calculated as follows :

A (q, (ki)1≤i≤n, (vi)1≤i≤n) =
n∑
i=1

αivi

2. Non zero probabilities are assigned to only a few number of values

48

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.15 – Soft-Query Retrieval

2.5.2 Introducing Attention Mechanisms to the Sequence to Sequence framework

The idea of attention mechanisms was first introduced in (Bahdanau et al., 2015) and consists in intro-

ducing an attention layer between the encoder and the decoder in order to enable the decoder to decide

which part of the encoder outputs are relevant to the generation of the next output.

Formally, let us suppose that our objective is to learn a mapping function Φθ from the space of the input

sequences X to the space of the output sequences Y .

Let Dx be the dimensionality of the input vectors and Tx be the length of the input sequences. Let Dy

be the dimensionality of the output vectors and Ty be the length of the output sequences.

The training dataset is composed of N input sequences (X1
i , . . . , X

Tx
i)1≤i≤N and N output sequences

(Y 1
i , . . . , Y

Ty
i)1≤i≤N .

49

Ecole des Ponts et Chaussées Hachem Madmoun

We would like to describe the mapping function Φθ which transforms an element from the input space

(X1
i , . . . , X

Tx
i) ∈ X into an element of the output space (Ŷ 1

i , . . . , Ŷ
Ty
i) ∈ Y .

Hence,

Y ∈

(Ŷ 1
i , . . . , Ŷ

Ty
i) = Φθ(X

1
i , . . . , X

Tx
i)

The mapping function Φθ, described in figure 2.17, can be decomposed into the following transforma-

tions :

— An encoder layer Eθe parameterized by θe learns to map the input sequence (X1
i , . . . , X

Tx
i) into

the sequence of encoder hidden states h1i , . . . , h
Tx
i .

— A decoder layer Dθd parameterized by θd learns to map the encoder hidden states h1i , . . . , h
Tx
i to

the output sequence Ŷ 1
i , . . . , Ŷ

Ty
i .

— Let s1i , . . . , s
Ty
i be the decoder hidden states. An attention layer Aθa parameterized by θa learns

to assign attention weights α<ty ,1>i , . . . , α
<ty ,Tx>
i to the encoder hidden states h1i , . . . , h

Tx
i when

generating the decoder hidden state styi for all ty ∈ {1, . . . , Ty}.

— Each decoder hidden state styi is then mapped into the prediction vector Ŷ ty
i for all ty ∈ {1, . . . , Ty}

using the final layer Fθf .

1. The Encoder :

The encoder Eθe is a GRU model 2.4, parameterized by the following parameters :Ur ∈ RM×M , Vr ∈

RD×M , Uh ∈ RM×M , Vh ∈ RD×M , Uz ∈ RM×M , Vz ∈ RD×M

The GRU maps the input sequence (X1
i , . . . , X

Tx
i) into the sequence (h1i , . . . , h

Tx
i).

Let us consider tx ∈ {1, . . . , Tx}. Equations 2.5.18, 2.5.19 , 2.5.20 , 2.5.21 describe how the

encoder Eθe generates the hidden state htxi from htx−1
i and Xtx

i :

rtxi = σ
(
Urh

tx−1
i + VrX

tx
i

)
(Generating the reset gate vector) (2.5.18)

h̃txi = tanh
(
rtxi ◦ Uhh

tx−1
i + VhX

tx
i

)
(Generating the new memory candidate) (2.5.19)

ztxi = σ
(
Uzh

tx−1
i + VzX

tx
i

)
(Generating the update gate vector) (2.5.20)

htxi = (1− ztxi) ◦ h̃txi + ztxi ◦ h
tx−1
i (Generating the new hidden state) (2.5.21)

2. The Decoder :

50

Ecole des Ponts et Chaussées Hachem Madmoun

Let us now consider ty ∈ {1, . . . , Ty}. We would like to generate the decoder hidden state styi from

the previous hidden state sty−1
i and a context vector ctyi resulting from an attention mechanism

applied on the encoder hidden states h1i , . . . , h
Tx
i .

3. The Attention Layer :

The attention layer Aθa , represented in figure 2.16, assigns a weight to each encoder hidden state

in order to output the final context vector cti as follows :

FIGURE 2.16 – The attention layer

— A Feed Forward neural network is applied to calculate an alignment score between the deco-

der previous hidden state sty−1
i and each encoder hidden state htxi ∈ {h1i , . . . , h

Tx
i }. There

are multiple alignment functions available, including the additive alignment function of Bah-

danau (Bahdanau et al., 2017), as well as the multiplicative alignment function of Luong

(Luong et al., s. d.).

e
<ty ,tx>
i =

vTa tanh

(
W1s

ty−1
i +W2h

tx
i

)
Bahdanau’s additive alignment function

s
ty−1
i

T
Whtxi Luong’s multiplicative alignment function

— The resulting alignment score e<ty ,tx>i can then be turned into the attention weight α<ty ,tx>i

using a distribution function (such as the softmax, the sparsemax (Martins & Astudillo,

2016) or the sparse entmax (Martins et al., 2020) distribution functions).

— The attention vector (also called the context vector) is then calculated as follows :

c
ty
i =

Tx∑
tx=1

α
<ty ,tx>
i htxi

— As a result, the context vector can be seen as the attention vector associated with the query

51

Ecole des Ponts et Chaussées Hachem Madmoun

q = s
ty−1
i , the keys (kt)1≤t≤Tx = (htxi)1≤tx≤Tx and the values (vt)1≤t≤Tx = (htxi)1≤tx≤Tx .

A (q, (ki)1≤i≤n, (vi)1≤i≤n) =

Tx∑
tx=1

α
<ty ,tx>
i htxi = c

ty
i

4. The Final Layer :

The final layer Fθf is then applied on each decoder hidden state styi in order to generate the pre-

diction Ŷ ty
i . The nature of the final layer depends on the kind of application we are dealing with.

For instance, in a sentiment analysis problem, the final layer is a basic Dense layer parameterized

by θf = (Wf , bf) with a softmax activation function :

Ŷi
ty

= softmax
(
W T
f s

ty
i + bf

)

52

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.17 – Sequence to sequence model with attention

2.5.3 Applying the Sequence to Sequence Model for Neural Machine Translation

By replacing the sequence to sequence architecture represented in 2.11 with the sequence to sequence

with attention mechanisms framework defined in 2.18, we obtain the following architecture for Neural

Machine Translation.

53

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.18 – The sequence to sequence architecture with attention mechanisms

54

Ecole des Ponts et Chaussées Hachem Madmoun

2.6 The Transformer architecture

2.6.1 Introduction

"Attention is All You Need" (Vaswani et al., 2017) stands out among the most important and interesting

papers of the recent years. It presented several improvements to the soft attention algorithm and made it

possible to perform the sequence to sequence modeling without having to use recurrent network units.

Therefore, the Transformer model proposed in (Vaswani et al., 2017) and represented in the figure 2.19

is entirely based on self-attention mechanisms without using sequence-aligned recurrent architectures.

FIGURE 2.19 – The Transformer Architecture

2.6.2 Creating a contextual embedding with Self Attention

Let us consider a sequence of D-dimensional input vectors (Xt)1≤t≤T . In order to use the attention

mechanism, we define the projections of the embeddings Xt onto the dq-dimensional query space, dk-

dimensional key space and dv-dimensional value space :

Rdq ∈

qt =W T
QX

t

Rdk ∈kt =W T
KX

t

Rdv ∈

vt =W T
V X

t

55

Ecole des Ponts et Chaussées Hachem Madmoun

Where WQ ∈ RD×dq , WK ∈ RD×dk and WV ∈ RD×dv are the projection matrices onto the low

dimensional query, key and value spaces, respectively. We also need dq = dk.

Let us consider a query qt ∈ {q1, . . . , qT }. The Self Attention transformation, represented in figure

2.20 consists in creating a contextual embedding A
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
associated with the

embedding vector Xt.

To that end, the scaled dot product alignment function (Vaswani et al., 2017) is used to calculate the

similarity e<t,t
′> between the query qt and the keys (kt

′
)1≤t′≤T as follows :

e<t,t
′> =

qt.kt
′

√
dk

(2.6.22)

A Softmax distribution function is then used to turn the similarity scores e<t,t
′> into attention weights

α<t,t
′> representing the contribution of the embedding Xt′ in the process of generating the contextual

embedding A
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
.

α<t,t
′> =

e<t,t
′>

T∑
s=1

e<t,s>
(2.6.23)

The contextual embedding A
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
can then be computed as follows :

A
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
=

T∑
t′=1

α<t,t
′>vt

′
(2.6.24)

56

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.20 – Creating the contextual embedding with Self Attention

2.6.3 The Matrix of contextual embeddings

We can generalize the way to create the contextual embeddingA
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
associa-

ted with the embedding Xt to all the embedding vectors (Xt′)1≤t′≤T .

We consider the following matrix notations :

Q =

— q1 —
...

...
...

— qT —

 ∈ RT×dq , K =

— k1 —
...

...
...

— kT —

 ∈ RT×dk , V =

— v1 —
...

...
...

— vT —

 ∈ RT×dv

We define the scaled dot product attention matrix, denoted A(Q,K, V), as follows :

A(Q,K, V) := Softmax
(
QKT

√
dk

)
V

Where the notation Softmax(M) for a matrix M ∈ RT×d refers to the Softmax applied to each row of

the matrix M .

57

Ecole des Ponts et Chaussées Hachem Madmoun

We have :

Softmax
(
QKT

√
dk

)
V = Softmax

[qt.kt′√
dk

]
1≤t≤T
1≤t′≤T

V

= Softmax

([
e<t,t

′>
]
1≤t≤T
1≤t′≤T

)
V

=
[
α<t,t

′>
]
1≤t≤T
1≤t′≤T

— v1 —
...

...
...

— vT —

=

—
T∑
t′=1

α<1,t′>vt
′

—

...
...

...

—
T∑
t′=1

α<t,t
′>vt

′
—

...
...

...

—
T∑
t′=1

α<T,t
′>vt

′
—

=

— A
(
q1, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
—

...
...

...

— A
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
—

...
...

...

— A
(
qT , (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
—

Therefore :

A(Q,K, V) =

— A
(
q1, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
—

...
...

...

— A
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
—

...
...

...

— A
(
qT , (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
—

In other words, the t-th row of the scaled dot product attention matrix A(Q,K, V) is the contextual

embedding vectors A
(
qt, (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
associated with the embedding vector Xt.

58

Ecole des Ponts et Chaussées Hachem Madmoun

2.6.4 MultiHead Attention with the Scaled Dot Product Attention

The scaled dot product attention can be generalized to any query Q ∈ RTq×dq , key K ∈ RTk×dk and

value V ∈ RTv×dv matrices such that dq = dk and Tk = Tv = T ′.

Q =

— q1 —
...

...
...

— qTq —

 ∈ RTq×dq , K =

— k1 —
...

...
...

— kTk —

 ∈ RTk×dk , V =

— v1 —
...

...
...

— vTv —

 ∈ RTv×dv

The scaled dot product attention matrix is then defined as follows :

A(Q,K, V) = Softmax
(
QKT

√
dk

)
V =

— A
(
q1, (kt

′
)1≤t′≤T ′ , (vt

′
)1≤t′≤T ′

)
—

...
...

...

— A
(
qt, (kt

′
)1≤t′≤T ′ , (vt

′
)1≤t′≤T ′

)
—

...
...

...

— A
(
qTq , (kt

′
)1≤t′≤T ′ , (vt

′
)1≤t′≤T ′

)
—

∈ RTq×dv

The MultiHead Attention module, represented in figure 2.21, consists in applying the attention mecha-

nism defined in the previous section h times in order to capture different notions of similarity.

Hence, for each head h′ ∈ {1 . . . , h}, let W h′
Q ∈ Rdq×pq , W h′

K ∈ Rdk×pk and W h′
V ∈ Rdv×pv be the h′-th

projection matrices of Q, K and V onto the low dimensional key, query and value spaces of size pq, pk

and pv, respectively. (We also have pq = pk).

The h′-th attention head is then defined as A
(
QW h′

Q ,KW
h′
K , V W

h′
V

)
.

The concatenation layer aims at stacking all the attention heads together to make a new flatten vector,

which is then projected onto Rpo using the projection matrixWo ∈ Rhpv×po . The output of the MultiHead

Attention layer P is then computed as follows :

P = concat
(
A
(
QW 1

Q,KW
1
K , V W

1
V

)
, . . . , A

(
QW h

Q,KW
h
K , V W

h
V

))
Wo ∈ RTq×po

59

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.21 – MultiHead Attention with h heads

2.6.5 Positional encoding

The attention mechanism is permutation invariant. In order to account for the order of the embedding

vectors X1, . . . , XT ∈ RD, we use positional encoding vectors.

The positional encoding vectors p1, . . . , pT ∈ RD have the same dimension as the input embeddings

X1, . . . , XT .

— For each time step t ∈ {1, . . . , T}, there is a unique positional encoding vector.

— The distance between two steps should be consistent across sentences with different lengths.

The method used in the original paper (Vaswani et al., 2017) is a linear transformation T (k) ∈ RD×D

such that

T (k)pt = pt+k

60

Ecole des Ponts et Chaussées Hachem Madmoun

It is defined as follows : For d ∈ {1, . . . , D2 } :

wi =
1

100000
2i
D

and pt =

sin(w1t)

cos(w1t)
...

sin(wdt)

cos(wdt)
...

sin(wD
2
t)

cos(wD
2
t)

We define for a d ∈ {1, . . . , D2 } and for all t ∈ {1 . . . , T} :

etd =

sinwdt

coswdt

Therefore,

pt =

et1
...

etd
...

etD
2

By defining :

T (k) =

Φ
(k)
1

. . .

Φ
(k)
d

. . .

Φ
(k)
D
2

where Φ

(k)
d =

 cos(wdk) sin(wdk)

− sin(wdk) cos(wdk)

We get :

61

Ecole des Ponts et Chaussées Hachem Madmoun

T (k)pt =

Φ
(k)
1

. . .

Φ
(k)
d

. . .

Φ
(k)
D
2

et1
...

etd
...

etD
2

=

Φ
(k)
1 et1

...

Φ
(k)
d etd

...

Φ
(k)
D
2

etD
2

We have for all d in {1, . . . , D2 } :

Φ
(k)
d etd =

 cos(wdk) sin(wdk)

− sin(wdk) cos(wdk)

sinwdt

coswdt

=

 cos(wdk) sinwdt+ sin(wdk) coswdt

− sin(wdk) sinwdt+ cos(wdk) coswdt

=

sin (wd(t+ k))

cos (wd(t+ k))

= et+kd

Therefore,

T (k)pt =

Φ
(k)
1 et1

...

Φ
(k)
d etd

...

Φ
(k)
D
2

etD
2

=

et+k1

...

et+kd
...

et+kD
2

= pt+k

62

Ecole des Ponts et Chaussées Hachem Madmoun

2.6.6 The Normalization Process

The Batch Normalization

As explained in (Ioffe & Szegedy, 2015), the Batch Normalization process described in Algorithm 1

considerably helps overcome the vanishing gradients problem by acting like a regularizer.

63

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.22 – The Batch Normalization Process

64

Ecole des Ponts et Chaussées Hachem Madmoun

Algorithm 1 The Batch Normalization
Input:

Batches B1, . . . ,BM of size nB : ∀m ∈ {1, . . . ,M} Bm = {x(1)m , . . . , x
(nB)
m }

Output: Batches B̂1, . . . , B̂M of size nB : ∀m ∈ {1, . . . ,M} Bm = {z(1)m , . . . , z
(nB)
m }

1: Set m0 = 0, v0 = 0
2: for m = 1 to M do
3: Calculate the mini-batch mean µBm and the mini-batch variance σ2Bm

as follows :

µBm =
1

nB

nB∑
j=1

x(j)m (2.6.25)

σ2Bm
=

1

nB

nB∑
j=1

(x(j)m − µBm) ◦ (x(j)m − µBm) (2.6.26)

4: Update the mini-batch mean and the mini-batch using EWMA to get µ̂Bm and σ̂2Bm
as follows :

µ̂Bm = λµ ◦ µ̂Bm−1 + (1− λµ) ◦ µBm (2.6.27)

σ̂2Bm
= λσ ◦ σ̂2Bm−1

+ (1− λσ) ◦ σ2Bm
(2.6.28)

5: Normalize the batch m :

x̂(j)m [d] =
x
(j)
m [d]− µ̂Bm [d]√
σ̂2Bm

[d] + ϵ
(for all d ∈ {1, . . . , D} for all j ∈ {1, . . . , nB}) (2.6.29)

with ϵ ≈ 10−5 is just a smoothing parameter to avoid dividing by zero.
6: Scale and shift the previous output using two parameters γ and β estimated during the training

z(j)m = γ ◦ x̂(j)m + β (for all j ∈ {1, . . . , nB}) (2.6.30)

Algorithm 1 ensure the distribution of the activations within a layer has zero mean and unit variance

across a minibatch.

The Batch Normalization also makes the optimization significantly smoother, as explained in (Santurkar,

Tsipras, Ilyas, & Madry, 2018).

The Layer Normalization

The batch normalization process recenters and rescales across the examples within a minibatch. As

a result, the batch normalization method can suffer from bad estimates of the mean and the variance

parameters when the batch size is too small.

Geoffrey Hinton and his team proposed Layer Normalization (Ba, Kiros, & Hinton, 2016). The new

algorithm overcomes the cons of Batch Normalization by normalizing the activations across the feature

dimension instead of mini-batch directions, which makes is easier to apply for RNNs as well.

65

Ecole des Ponts et Chaussées Hachem Madmoun

2.6.7 The Final Architecture

The Transformer architecture is a sequence to sequence architecture, which relies mainly on the attention

mechanism.

The main layers used in the model are the following :

— The Multi-Head Attention layer introduced in 2.6.4.

— The pointwise Feed Forward layer.

— The Normalization Layer 2.6.6

Let us introduce the different steps of both the encoder and the decoder in the transformer.

Consider a sequence (w1
i , . . . , w

Tx
i) of indices representing the sequence of words processed using the

word2idx dictionary.

The Encoder Layer

The Encoder, represented in figure 2.23, generates an attention based representation able to focus on a

particular piece of information from a large context. It is composed of a stack of N = 6 identical layers.

Each layer is composed of the following sub-layers :

— The first sub-layer is a Multi-Head self Attention 2.6.4, with a residual connection and a normali-

zation layer .

— The Multi-Head attention can be seen as a way of re-averaging the value vectors in order to

create contextual embeddings without introducing non-linearities. The second sub-layer is a fully

connected feed-forward layer, with a residual connection and a normalization layer.

In the original paper (Vaswani et al., 2017), all the layers output data of the same dimension dmodel =

512.

66

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.23 – The Encoder layer in the Transformer

The Decoder Layer

The decoder, represented in figure 2.24 is responsible of retrieving the information from the encoded

representation through the matrices K and V .

It is composed of a stack of N = 6 identical layers. Each layer can be divided into the following steps :

— Similarly to the encoder, we combine the multi-head attention layers with a fully connected feed

forward layer.

— The first multi-head attention layer is slightly modified to the one introduced in 2.6.4. In order to

avoid look-ahead bias we introduce the notion of mask. Consider the following decoder queries,

keys and values :

Q =

— q1 —
...

...
...

— qT —

 ∈ RT×d, K =

— k1 —
...

...
...

— kT —

 ∈ RT×d, V =

— v1 —
...

...
...

— vT —

 ∈ RT×d

For t ∈ {1, . . . , T}, we don’t want the contextual embedding associated with the query qt, defined

in 2.6.24, to depend on the pairs (kt′ , vt′)t≤t′≤T

Hence, we "mask" the contributions α<t,t
′> for all t′ > t by setting them to zero.

So, we set e<t,t
′>, defined in 2.6.22, to −∞ for all t′ > t as shown in the following table :

67

Ecole des Ponts et Chaussées Hachem Madmoun

1 2 . . . t’ . . . T-1 T
1 e<1,1> -∞ . . . -∞ . . . -∞ -∞
2 e<2,1> e<2,2> . . . -∞ . . . -∞ -∞
...

...
...

...
...

...
...

...
t e<t,1> e<t,2> . . . e<t,t

′> . . . -∞ -∞
...

...
...

...
...

...
...

...
T-1 e<T−1,1> e<T−1,2> . . . e<T−1,t′> . . . e<T−1,T−1> -∞
T e<T,1> e<T,2> . . . e<T,t

′> . . . e<T,T−1> e<T,T>

After applying the softmax 2.6.23, we get the masked attention weights :

1 2 . . . t’ . . . T-1 T
1 α<1,1> 0 . . . 0 . . . 0 0
2 α<2,1> α<2,2> . . . 0 . . . 0 0
...

...
...

...
...

...
...

...
t α<t,1> α<t,2> . . . α<t,t

′> . . . 0 0
...

...
...

...
...

...
...

...
T-1 α<T−1,1> α<T−1,2> . . . α<T−1,t′> . . . α<T−1,T−1> 0
T α<T,1> α<T,2> . . . α<T,t

′> . . . α<T,T−1> α<T,T>

— Additionally, we add a residual connection and a normalization layer.

— Another multi-head attention layer, where the queries are the output of the first multi-head atten-

tion and the keys and values are the encoder outputs.

68

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.24 – The Decoder layer in the Transformer

The Transformer architecture

Finally, by putting it all together, we get the final transformer architecture, represented in 2.25.

69

Ecole des Ponts et Chaussées Hachem Madmoun

FIGURE 2.25 – The Transformer architecture

2.7 The Optimization algorithm

2.7.1 Position of the problem

In this section, we study the optimization problem, which can be written as follows :

min
θ∈Rd

f(θ) where f(θ) := Es∼P[L(θ, s)], (2.7.31)

where :

70

Ecole des Ponts et Chaussées Hachem Madmoun

— The function f is called the objective function.

— The function L is the loss function.

— P is the unknown data distribution on the domain S

— θ is the set of parameters we wish to optimize.

In the following sections, we are going to focus on the Adam optimizer. Section 2.7.2 is a brief intro-

duction to the history of the Adam algorithm. Section 2.7.3 is a description of the algorithm. In section

2.7.4, we analyze the convergence behavior of the algorithm in the nonconvex setting.

2.7.2 Brief history of the Adam optimizer

The Adam algorithm was first introduced in 2015 (Kingma & Ba, 2015). The authors proposed a proof

of convergence which was found to have problems. In 2018, (S. J. Reddi et al., 2018) clarified the

inconsistency of the previous paper and fixed the proof in the convex setting. In (S. Reddi et al., 2018),

the authors conducted the proof for the non convex case under some useful parameter settings.

In the following sections, we provide a detailed version of the proof provided in the original paper

(S. Reddi et al., 2018).

2.7.3 Description of the algorithm

The Adam algorithm defined in (S. Reddi et al., 2018) is summarized in Algorithm 2

Algorithm 2 The Adam Optimizer
Input:

Initial parameter value : θ1 ∈ Rd

Learning rates : {ηt}Tt=1

Decay parameters : 0 ≤ β1, β2 ≤ 1
Stability parameter : ϵ > 0

Output: ϵ-First Order Stationary Point θT+1

1: Set m0 = 0,v0 = 0
2: for t = 1 to T do
3: Draw a batch (sit)i∈Bt from P
4: Compute gt =

1
|Bt|

∑
s∈Bt

∇L(θt, s)

5: Update mt = β1mt−1 + (1− β1) gt
6: Update vt = vt−1 − (1− β2) (vt−1 − gt ◦ gt)
7: Update θt+1 = θt − ηt mt√

vt+ϵ

71

Ecole des Ponts et Chaussées Hachem Madmoun

2.7.4 The convergence behavior of the Adam optimizer

Preliminaries

We are fetching for First Order Stationary Points. We would like to prove that under some assumptions

on the loss function (not necessarily convex), we can have :

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
≤ h(T) with lim

T→+∞
h(T) = 0

Where T is the number of batches

Assumptions

— (A1) : We assume the loss function L to be L-smooth, which means that :

∀θ1, θ2 ∈ Rd ∀s ∈ S ∥∇L(θ2, s)−∇L(θ1, s)∥2 ≤ L∥θ2 − θ1∥2 (2.7.32)

— (A2) : We assume the loss function L to have bounded gradient : i.e,

∃G ∈ R+ ∀θ ∈ Rd ∀s ∈ S ∥∇L(θ, s)∥2 ≤ G (2.7.33)

— (A3) : We assume the variance of the loss function L to be bounded : i.e,

∀θ ∈ Rd E
[
∥∇L(θ; ξ)−∇L(θ)∥22|Ft

]
≤ σ2 (2.7.34)

where the sigma-algebra Ft represents the information known at time t

The convergence theorem

Theorem 2.7.1 (Convergence of the Adam Algorithm)
Let ηt = η for all t ∈ [T]. Furthermore, assume that ϵ, β2 and η are chosen such that the following

conditions are satisfied :

η ≤ 2G
√
1− β2
L

(2.7.35)

1− β2 ≤
ϵ4

16G2(G+ ϵ)2
(2.7.36)

Then, for (θt)t generated using ADAM (Algorithm 2) , we have the following inequality :

72

Ecole des Ponts et Chaussées Hachem Madmoun

1. If the batch size bt is fixed (i.e, bt = b0 for all t). Then,

∃c1, c2 ∈ R+
1

T

T∑
t=1

E
[
∥∇f(θt)∥22

]
≤ c1
T

+ c2 (2.7.37)

2. If the batch size bt = b0T for all t. Then,

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
1

T

)
(2.7.38)

3. If the batch size in linear in time (i.e, bt = b0t for all t). Then,

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
ln(T)

T

)
(2.7.39)

4. If the batch size is of the form bt = ⌈b0tγ⌉ for all t (with 0 < γ < 1). Then,

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
1

T γ

)
(2.7.40)

Démonstration : We would like to understand the change in function value between two successive iterations of

the algorithm 2. In the whole proof, we will consider β1 = 0

1. Showing that the objective function f is L-smooth

For all θ1, θ2 ∈ Rd

∥∇f (θ1)−∇f (θ2)∥2 = ∥∇Es∼P [L (θ1; s)]−∇Es∼P [L (θ2; s)]∥2 (from the definition 4.4.21)

= ∥Es∼P [∇L (θ1; s)]− Es∼P [∇L (θ2; s)]∥2

= ∥Es∼P [∇L (θ1; s)−∇L (θ2; s)]∥2

≤ Es∼P [∥∇L (θ1; s)−∇L (θ2; s)∥2]

≤ Es∼P [L ∥θ2 − θ1∥2] (from the assumption 2.7.32)

= L∥θ2 − θ1∥2

Therefore, f is L-smooth

2. Deducing the change in the objective value between two successive iterations.

Let us consider t ∈ [T]. As f is L-smooth, we can deduce that :

f (θt+1) ≤ f (θt) +∇⊤f (θt) (θt+1 − θt) +
L

2
∥θt+1 − θt∥22 (2.7.41)

73

Ecole des Ponts et Chaussées Hachem Madmoun

From the update equations in algorithm 2 we have :

θt+1 = θt − ηt
gt(√
vt + ϵ

)
Which can be expressed component-wise as follows :

∀i ∈ [d] θi,t+1 = θi,t − ηt
gi,t(√
vi,t + ϵ

) (2.7.42)

From 2.7.41 and 2.7.42, we deduce the following inequality :

f (θt+1) ≤ f (θt)− ηt
d∑

i=1

(
[∇f (θt)]i ×

gi,t√
vi,t + ϵ

)
+
Lη2t
2

d∑
i=1

g2
i,t(√

vi,t + ϵ
)2

Let us introduce the following notations for each time t′ :

b′t be the size of Bt′ .

The sigma-algebra Ft′ represents the information known at time t’.

Consequently :

E [f (θt+1) | Ft] ≤ f (θt)−ηt
d∑

i=1

(
[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

| Ft

])
︸ ︷︷ ︸

(a)

+
Lη2t
2

d∑
i=1

E

[
g2
i,t(√

vi,t + ϵ
)2 | Ft

]
︸ ︷︷ ︸

(b)

(2.7.43)

3. Bounding the first term (a) in 2.7.43

We have :

E

[
gi,t√
vi,t + ϵ

| Ft

]
= E

[
gi,t√
vi,t + ϵ

−
gi,t√

β2vi,t−1 + ϵ
+

gi,t√
β2vi,t−1 + ϵ

| Ft

]

= E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]
+ E

[
gi,t√

β2vi,t−1 + ϵ
| Ft

]
︸ ︷︷ ︸

= E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]
+

[∇f(θ)]i√
β2vi,t−1 + ϵ

Which enables us to rewrite (a) defined in 2.7.43 as follows :

(a) = −ηt
d∑

i=1

(
[∇f (θt)]i ×

[
[∇f (θt)]i√
β2vi,t−1 + ϵ

+ E

[
gi,t√
vi,t + ϵ

−
gi,t√

β2vi,t−1 + ϵ
| Ft

]])

= −ηt
d∑

i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ
−ηt

d∑
i=1

[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

−
gi,t√

β2vi,t−1 + ϵ
| Ft

]
︸ ︷︷ ︸

(a1)

(2.7.44)

74

Ecole des Ponts et Chaussées Hachem Madmoun

Let us bound the term (a1) in 2.7.44 :

−ηt
d∑

i=1

[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

−
gi,t√

β2vi,t−1 + ϵ
| Ft

]

≤

∣∣∣∣∣ηt
d∑

i=1

[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

−
gi,t√

β2vi,t−1 + ϵ
| Ft

]∣∣∣∣∣
≤ ηt

d∑
i=1

| [∇f (θt)]i |

∣∣∣∣∣×E

[
gi,t√
vi,t + ϵ

−
gi,t√

β2vi,t−1 + ϵ
| Ft

]∣∣∣∣∣
≤ ηt

d∑
i=1

| [∇f (θt)]i | × E

∣∣∣∣∣ gi,t√

vi,t + ϵ
−

gi,t√
β2vi,t−1 + ϵ

∣∣∣∣∣︸ ︷︷ ︸
(a2)

| Ft

 (2.7.45)

By using the update rule vi,t = β2vi,t−1 + (1− β2)g2
i,t from algorithm 2, we can bound the term (a2) in

2.7.45 :

(a2) =
∣∣gi,t

∣∣ ∣∣∣∣∣ 1
√
vi,t + ϵ

− 1√
β2vi,t−1 + ϵ

∣∣∣∣∣
=

∣∣gi,t

∣∣(√
vi,t + ϵ

) (√
β2vi,t−1 + ϵ

) ∣∣∣√vi,t −
√
β2vi,t−1

∣∣∣
=

∣∣gi,t

∣∣(√
vi,t + ϵ

) (√
β2vi,t−1 + ϵ

) |vi,t − β2vi,t−1|
√
vi,t +

√
β2vi,t−1

=

∣∣gi,t

∣∣(√
vi,t + ϵ

) (√
β2vi,t−1 + ϵ

) (1− β2)g2
i,t√

β2vi,t−1 + (1− β2)g2
i,t +

√
β2vi,t−1

(by using the update rule)

≤
∣∣gi,t

∣∣(√
vi,t + ϵ

) (√
β2vi,t−1 + ϵ

) (1− β2)g2
i,t√

β2vi,t−1 + (1− β2)g2
i,t

(since
√
β2vi,t−1 ≥ 0)

≤
∣∣gi,t

∣∣
ϵ
(√

β2vi,t−1 + ϵ
) (1− β2)g2

i,t√
(1− β2)g2

i,t

(since
√
vi,t ≥ 0 and β2vi,t−1 ≥ 0)

=

√
1− β2g2

i,t

ϵ
(√

β2vi,t−1 + ϵ
) (2.7.46)

From 2.7.44, 2.7.45 and 2.7.46, we deduce the following inequality :

(a1) ≤ ηt
d∑

i=1

(
| [∇f (θt)]i |

√
1− β2
ϵ

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

])
(2.7.47)

Therefore, we deduce a bound for (a) from 2.7.44 and 2.7.47 :

(a) ≤ −ηt
d∑

i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ
+ ηt

d∑
i=1

(
| [∇f (θt)]i |

√
1− β2
ϵ

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

])
(2.7.48)

75

Ecole des Ponts et Chaussées Hachem Madmoun

By using the assumption 2.7.33, we can also bound the term | [∇f (θt)]i for all i ∈ [d].

Indeed,

∀i ∈ [d] |[∇f (θt)]i| ≤ ∥∇f(θt)∥2

:= ∥Es∼P[L(θt, s)]∥2

≤ Es∼P[∥∇L(θt; s)∥]

≤ G (from assumption2.7.33)

So,

∀i ∈ [d] |[∇f (θt)]i| ≤ G (2.7.49)

From 2.7.48 and 2.7.49 we deduce :

(a) ≤ −ηt
d∑

i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ
+
ηtG
√
1− β2
ϵ

d∑
i=1

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

]
(2.7.50)

4. Bounding the second term (b) in 2.7.43

By using the update rule vi,t = β2vi,t−1 + (1− β2)g2
i,t from algorithm 2 in the expression (b), we get :

(b) :=
Lη2t
2

d∑
i=1

E

[
g2
i,t(√

vi,t + ϵ
)2 | Ft

]

=
Lη2t
2

d∑
i=1

E

 g2
i,t(√

β2vi,t−1 + (1− β2) g2
i,t + ϵ

)2 | Ft

≤ Lη2t

2

d∑
i=1

E

[
g2
i,t(√

β2vi,t−1 + ϵ
)2 | Ft

]
(since (1− β2) g2

i,t ≥ 0)

≤ Lη2t
2ϵ

d∑
i=1

E

[
g2i,t√

β2vi,t−1 + ϵ
| Ft

]
(since

√
β2vi,t−1 ≥ 0)

So,

(b) ≤ Lη2t
2ϵ

d∑
i=1

E

[
g2i,t√

β2vi,t−1 + ϵ
| Ft

]
(2.7.51)

5. Combining the upper bounds on (a) and (b) defined in 2.7.43

By combining the upper bounds 2.7.50 and 2.7.51, we get the following inequality :

76

Ecole des Ponts et Chaussées Hachem Madmoun

E [f (θt+1) | Ft] ≤ f (θt)−ηt
d∑

i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ︸ ︷︷ ︸
(c)

+
ηtG
√
1− β2
ϵ

d∑
i=1

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

]
︸ ︷︷ ︸

(d)

+
Lη2t
2ϵ

d∑
i=1

E

[
g2i,t√

β2vi,t−1 + ϵ
| Ft

]
︸ ︷︷ ︸

(e)

(2.7.52)

— Bounding the sum of (d) and (e) defined in 2.7.52 :

We have :

(d) + (e) =

(
ηtG
√
1− β2
ϵ

+
Lη2t
2ϵ

) d∑
i=1

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

]

≤ 1

ϵ

(
ηtG
√
1− β2
ϵ

+
Lη2t
2ϵ

) d∑
i=1

E
[
g2
i,t | Ft

]
(since

√
β2vi,t−1 ≥ 0) (2.7.53)

— Bounding the expression (c) defined in 2.7.52 :

To that end, we first need to prove that ∀i ∈ [d] ∀t′ ∈ [T] vi,t′ ≤ G2. We can do it by induction on t′.

— It’s true for t′ = 0

— Let’s consider t′ ∈ [T] such that ∀i ∈ [d] vi,t′−1 ≤ G2. We have :

∀i ∈ [d] vi,t′ = β2vi,t−1 + (1− β2)g2
i,t

≤ β2G2 + (1− β2)g2
i,t (by induction hypothesis)

≤ β2G2 + (1− β2) ∥gt∥22

= β2G
2 + (1− β2)

∣∣∣∣∣
∣∣∣∣∣ 1bt ∑

s∈Bt

∇L(θt, s)

∣∣∣∣∣
∣∣∣∣∣
2

2

(by definition of gt)

≤ β2G2 + (1− β2)
1

b2t

∑
s∈Bt

||∇L(θt, s)||22

≤ β2G2 + (1− β2)
1

b2t

∑
s∈Bt

G2 (by assumption 2.7.33)

= β2G
2 + (1− β2)

1

b2t
btG

2

= β2G
2 +

(1− β2)
bt

G2

≤ β2G2 + (1− β2)G2 (sincebt ≥ 1)

= G2

We conclude by induction that,

∀i ∈ [d] ∀t′ ∈ [T] vi,t′ ≤ G2 (2.7.54)

77

Ecole des Ponts et Chaussées Hachem Madmoun

Consequently,

(c) := −ηt
d∑

i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ

≤ − ηt√
β2G+ ϵ

d∑
i=1

[∇f (θt)]
2
i (by using 2.7.54)

= − ηt√
β2G+ ϵ

∥∇f (θt)∥22 (2.7.55)

— Combining the results :

By using the inequalities 2.7.53 and 2.7.55, the upper bound in 2.7.52 becomes :

E [f (θt+1) | Ft] ≤ f (θt)−
ηt√

β2G+ ϵ
∥∇f (θt)∥22

+
1

ϵ

(
ηtG
√
1− β2
ϵ

+
Lη2t
2ϵ

)
E
[
∥gt∥22 | Ft

]
︸ ︷︷ ︸

(f)

(2.7.56)

6. Bounding the last term (f)

Let us introduce the following notations :

ξt :=
1

bt

∑
s∈Bt

(∇L(θt, s)−∇f(θt)) (2.7.57)

∀s ∈ Bt Ys := ∇L(θt, s)−∇f(θt) (2.7.58)

Y :=
∑
s∈Bt

Ys (2.7.59)

Then,

ξt :=
1

bt
Y (2.7.60)

78

Ecole des Ponts et Chaussées Hachem Madmoun

Consequently,

(f) := E
[
∥gt∥22 | Ft

]
= E

∥∥∥∥∥ 1bt ∑
s∈Bt

∇L(θt, s)

∥∥∥∥∥
2

2

| Ft

 (by definition)

= E

∥∥∥∥∥ 1bt ∑
s∈Bt

(∇L(θt, s)−∇f(θt) +∇f(θt))

∥∥∥∥∥
2

2

| Ft

= E

∥∥∥∥∥
(

1

bt

∑
s∈Bt

(∇L(θt, s)−∇f(θt))

)
+∇f(θt)

∥∥∥∥∥
2

2

| Ft

= E

[
∥ξt +∇f(θt)∥22 | Ft

]
(by definition 2.7.57)

= E
[
(ξt +∇f(θt))⊤ (ξt +∇f(θt)) | Ft

]
= E

[
∥ξt∥22 | Ft

]
+ E [ξt | Ft]

⊤︸ ︷︷ ︸
=0

∇f(θt) +∇f(θt)⊤ E [ξt | Ft]︸ ︷︷ ︸
=0

+∥∇f(θt)∥22

=
1

b2t
E
[
∥Y ∥22 | Ft

]
+ ∥∇f(θt)∥22 (using 2.7.60)

=
1

b2t
E

∥∥∥∥∥∥
(∑

s∈Bt

Ys

)⊤(∑
s′∈Bt

Ys′

)∥∥∥∥∥∥
2

2

| Ft

+ ∥∇f(θt)∥22 (using 2.7.59)

=
1

b2t

∑
s,s′∈Bt

E
[
Y ⊤
s Ys′ | Ft

]
+ ∥∇f(θt)∥22

=
1

b2t

∑
s,s′∈Bt

s̸=s′

E
[
Y ⊤
s Ys′ | Ft

]
+

1

b2t

∑
s,s′∈Bt

s=s′

E
[
Y ⊤
s Ys′ | Ft

]
+ ∥∇f(θt)∥22

=
1

b2t

∑
s,s′∈Bt

s̸=s′

E [Ys | Ft]
⊤ E [Ys′ | Ft]︸ ︷︷ ︸

=0

+
1

b2t

∑
s∈Bt

E
[
∥Ys∥22 | Ft

]
+ ∥∇f(θt)∥22 (sinceYsYs′ | Ft)

=
1

b2t

∑
s∈Bt

E
[
∥∇L(θt, s)−∇f(θt)∥22 | Ft

]
+ ∥∇f(θt)∥22 (by definition 2.7.58)

≤ 1

b2t

∑
s∈Bt

σ2 + ∥∇f(θt)∥22 (using the assumption 2.7.34)

≤ σ2

bt
+ ∥∇f(θt)∥22

We conclude the following bound on the (f) term defined in 2.7.56 :

(f) ≤ σ2

bt
+ ∥∇f(θt)∥22 (2.7.61)

By using the bound 2.7.61, the inequality 2.7.56 becomes :

E [f (θt+1) | Ft] ≤ f (θt)−
ηt√

β2G+ ϵ
∥∇f (θt)∥22 +

1

ϵ

(
ηtG
√
1− β2
ϵ

+
Lη2t
2ϵ

)(
σ2

bt
+ ∥∇f(θt)∥22

)

79

Ecole des Ponts et Chaussées Hachem Madmoun

Which results in the following inequality :

E [f (θt+1) | Ft] ≤ f (θt) + ∥∇f (θt)∥22

(
−ηt√
β2G+ ϵ

+
1

ϵ

(
ηtG
√
1− β2
ϵ

+
Lη2t
2ϵ

))
︸ ︷︷ ︸

(i)

+
ηtσ

2

ϵbt

(
G
√
1− β2
ϵ

+
Lηt
2ϵ

)
︸ ︷︷ ︸

(ii)

(2.7.62)

7. Incorporating the assumptions on the hyperparameters

The final step of the proof is to use the conditions on the hyperparameters to bound (i) and (ii).

— Using the choice of η

Based on the condition 2.7.36, the learning rate is chosen to be fixed such that :

η ≤ 2G
√
1− β2
L

Therefore,

Lη

2ϵ
≤ G
√
1− β2
ϵ

(2.7.63)

We can then bound the first term (i) as follows :

(i) := −η
(

1√
β2G+ ϵ

− 1

ϵ

(
G
√
1− β2
ϵ

+
Lηt
2ϵ

))
≤ −η

(
1√

β2G+ ϵ
− 1

ϵ

(
G
√
1− β2
ϵ

+
G
√
1− β2
ϵ

))
(using 2.7.63)

= −η

 1√
β2G+ ϵ

− 2G
√
1− β2
ϵ2︸ ︷︷ ︸
(iii)

 (2.7.64)

We can use the inequality 2.7.63 to bound the second term (ii) as follows :

(ii) :=
ηtσ

2

ϵbt

(
G
√
1− β2
ϵ

+
Lηt
2ϵ

)
≤ ηtσ

2

ϵbt

(
G
√
1− β2
ϵ

+
G
√
1− β2
ϵ

)
(using 2.7.63)

=
2ησ2G

√
1− β2

ϵ2bt
(2.7.65)

— Using the choice of β2 to bound (iii)

By using condition 2.7.36, we can bound (iii) :

80

Ecole des Ponts et Chaussées Hachem Madmoun

2G
√
1− β2
ϵ2

=

√
4G2(1− β2)

ϵ4

≤

√
4G2

ϵ4
ϵ4

16G2(G+ ϵ)2
(using 2.7.36)

=
1

2

1

G+ ϵ

≤ 1

2

1√
β2G+ ϵ

(since β2 ≤ 1) (2.7.66)

— Deducing a new bound for (i)

From 2.7.66, we conclude that :

1√
β2G+ ϵ

− 2G
√
1− β2
ϵ2

≥ 1

2

1√
β2G+ ϵ

The inequality 2.7.64 becomes

(i) ≤ − η

2(
√
β2G+ ϵ)

(2.7.67)

Finally, by using 2.7.67 and 2.7.65, we get the following update to the inequality 2.7.62 :

E [f (θt+1) | Ft] ≤ f (θt)−
η

2(
√
β2G+ ϵ)

∥∇L (θt)∥22 +
2ησ2G

√
1− β2

ϵ2bt
(2.7.68)

8. Concluding according to the batch size

Notations :

Let us define the following constants :

∆ =
η

2(
√
β2G+ ϵ)

α =
2ησ2G

√
1− β2

ϵ2

The inequality 2.7.68 can then be written as follows :

E [f (θt+1) | Ft] ≤ f (θt)−∆ ∥∇L (θt)∥22 +
α

bt
(2.7.69)

By taking the expected value of the inequality 2.7.69,

E [f (θt+1)] ≤ E [f (θt)]−∆E
[
∥∇L (θt)∥22

]
+
α

bt

Which can be rearranged as follows :

81

Ecole des Ponts et Chaussées Hachem Madmoun

E
[
∥∇L (θt)∥22

]
≤ E [f (θt)]− E [f (θt+1)]

∆
+

α

∆bt
(2.7.70)

By summing 2.7.70 for all t ∈ [T], we get :

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ 1

T∆

T∑
t=1

(E [f (θt)]− E [f (θt+1)]) +
α

T∆

T∑
t=1

1

bt

=
1

T∆
(f (θ1)− E [f (θT+1)]) +

α

T∆

T∑
t=1

1

bt
(using telescoping sum)

≤ 1

T∆
(f (θ1)− f (θ∗)) +

α

T∆

T∑
t=1

1

bt
(where θ∗ := argmin

θ
f(θ))

We conclude that :

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ f (θ1)− f (θ∗)

T∆
+

α

T∆

T∑
t=1

1

bt
(2.7.71)

— If the batch size is fixed : bt = b0 for all t :

Then, the inequality 2.7.71 becomes :

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ f (θ1)− f (θ∗)

T∆
+

α

∆b0

Let us denote c1 = f(θ1)−f(θ∗)
∆ and c2 = α

∆b0
, we conclude the first part 2.7.37 of the theorem :

∃c1, c2 ∈ R+
1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1
T

+ c2

— If the batch size bt = b0T for all t :

Then, the inequality 2.7.71 becomes :

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1
T

+
c2
T

T∑
t=1

1

T

=
c1 + c2
T

We conclude the part 2.7.38 of the theorem, i.e :

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
= O

(
1

T

)

— If the batch size in linear in time (i.e, bt = b0t for all t) :

82

Ecole des Ponts et Chaussées Hachem Madmoun

Then, the inequality 2.7.71 becomes :

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1
T

+
c2
T

T∑
t=1

1

t︸ ︷︷ ︸
(E1)

(2.7.72)

We would like to find an equivalent to (E1).

By applying the mean value theorem to the function Φ : t 7→ ln(t) between t and t + 1 (for a fixed

t ∈ [T]), there exists ct ∼
t→+∞

t such that :

Φ(t+ 1)− Φ(t) =
1

ct
∼ 1

t

As,
∑

(1t)t diverges, we conclude that :

T∑
t=1

(Φ(t+ 1)− Φ(t)) ∼
t→+∞

T∑
t=1

1

t

By telescoping sum, it implies :

ln(T) ∼
T→+∞

T∑
t=1

1

t

Which gives, by deviding by T :

1

T

T∑
t=1

1

t
∼

T→+∞

ln(T)

T

On the other hand,

1

T
= o

(
ln(T)

T

)
Which gives an equivalent to the bound (E1) in 2.7.72 :

(E1) ∼
T→+∞

c2
ln(T)

T
(2.7.73)

From 2.7.71 and 2.7.73 we conclude the part 2.7.39 of the theorem :

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
ln(T)

T

)

— If the batch size is of the form bt = ⌈b0tγ⌉ for all t (with 0 < γ < 1) :

Then, the inequality 2.7.71 becomes :

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1
T

+
c2
T

T∑
t=1

1

tγ︸ ︷︷ ︸
(E2)

(2.7.74)

83

Ecole des Ponts et Chaussées Hachem Madmoun

We would like to find an equivalent to (E2) :

By applying the mean value theorem to the function Ψ : t 7→ 1
1−γ t

1−γ between t−1 and t, there exists

ct ∼ t such that :

Ψ(t)−Ψ(t− 1) =
1

cγt
∼

t→+∞

1

tγ

And the Riemann series
∑
t

1
tγ diverges (since γ < 1), so we have :

T∑
t=1

(Ψ(t)−Ψ(t− 1)) ∼
t→+∞

T∑
t=1

1

tγ

Hence, by telescoping sum :
T 1−γ

1− γ
∼

T→+∞

T∑
t=1

1

tγ

Consequently :
c2
T

T∑
t=1

1

tγ
∼

T→+∞

c2
(1− γ)T γ

And since :

1

T
= o

(
1

T γ

)
We conclude the following equivalent to the bound (E2) :

(E2) ∼
T→+∞

c2
(1− γ)T γ

(2.7.75)

From 2.7.71 and 2.7.75 we conclude the second part 2.7.39 of the theorem :

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
1

T γ

)

84

	Introducing Sequential Models with applications in Natural Language Processing
	The Hidden Markov Model
	Introducing Recurrent Neural Networks
	From Hidden Markov Models to Recurrent Neural Networks
	Vanilla Recurrent Neural Networks
	Long Short-Term Memory (LSTM)
	Gated Recurrent Units
	Different applications of RNNs
	Applying the RNN/LSTM Model to predict the next word
	Word Embeddings
	Predicting the next word using LSTM architectures
	The Sequence to Sequence Framework
	Applying the Sequence to Sequence Model for Neural Machine Translation
	Limitations of classical models
	Introducing the Attention Mechanisms in Machine Learning
	Query-Retrieval Modeling
	Introducing Attention Mechanisms to the Sequence to Sequence framework
	Applying the Sequence to Sequence Model for Neural Machine Translation
	The Transformer architecture
	Introduction
	Creating a contextual embedding with Self Attention
	The Matrix of contextual embeddings
	MultiHead Attention with the Scaled Dot Product Attention
	Positional encoding
	The Normalization Process
	The Batch Normalization
	The Layer Normalization
	The Final Architecture
	The Encoder Layer
	The Decoder Layer
	The Transformer architecture
	The Optimization algorithm
	Position of the problem
	Brief history of the Adam optimizer
	Description of the algorithm
	The convergence behavior of the Adam optimizer
	Preliminaries
	Assumptions
	The convergence theorem

