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Position of the Problem

▶ Goal: Predict multiple future time steps for a target variable
(y ti ) using:

▶ Past observations of the target variable.

▶ Additional features that provide context and improve
forecasting accuracy.

▶ Multiple time series:

▶ We consider several entities i ∈ {1, . . . ,N}, each associated
with its own time series (y t

i )t−Tb+1≤t≤t+Tf
.

▶ Examples of entities:

▶ Finance: Volatility for different stocks in financial markets.

▶ Energy: Consumption or production across multiple regions.

▶ Traffic: Flow rates at various locations.
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Position of the Problem

▶ Let us consider an entity i at time t:

▶ We aim to predict the future values of the univariate time
series (y ti )t−Tb+1≤t≤t+Tf

:

▶ The past values in a Tb sized window of the target time series:
(y t−Tb+1

i , . . . , y t
i )

▶ The future values up to the horizon Tf : (y
t+1
i , . . . , y t+Tf

i )

▶ There are 3 possible inputs:

Name Notation
Static attributes si ∈ Rds

Time varying unknown (z t−Tb+1
i , . . . , z ti ) ∈ RTb×dz

Time varying known (x t+1
i , . . . , x t+Tf

i ) ∈ RTf ×dx

Table: Types of Inputs
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Position of the Problem

▶ Features for Prediction:

▶ Static Attributes:

▶ Fixed characteristics of each financial asset.

▶ Example: Industry sector or market capitalization of a stock.

▶ Time-Varying Known Features:

▶ Features whose future values are available or predictable.

▶ Example: Economic calendar events, such as interest rate
decisions or earnings announcements.

▶ Time-Varying Unknown Features:

▶ Sequential features observed only up to the present time.

▶ Example: Recent trends in stock price movements or realized
volatility.
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Position of the Problem

▶ Let Q be the set of quantiles that interest us. For this
example, Q = {0.1, 0.5, 0.9}.

▶ The model outputs for each time step t + tf (for
tf ∈ {1, . . . ,Tf }) the prediction associated with each quantile
q ∈ Q, denoted as ŷ t+tf

i (q).

▶ Thus, for each tf ∈ {1, . . . ,Tf }, the output vector at each
time step t + tf is given by:

ŷ t+tf
i =


...

ŷ t+tf
i (q)

...


q∈Q
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Position of the Problem

Example: The following graph summarizes the previous
notations:
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The Learning Problem

▶ To train the model, we compare the predictions ŷ t+tf
i ∈ R|Q|

to the true values y t+tf
i for all tf ∈ {1, . . . ,Tf }.

▶ The loss function is defined as:

L (B, θ) =
∑
i∈B

∑
q∈Q

Tf∑
tf =1

QLq
(
y t+tf
i , ŷ t+tf

i (q)
)

|B|Tf

▶ Where:

▶ B is the batch of training data.

▶ ∀y , ŷ ∈ R, QLq(y , ŷ) = q(y − ŷ)+ + (1− q)(ŷ − y)+

▶ Equivalently:

QLq(y , ŷ) = max ((q − 1)(y − ŷ), q(y − ŷ))
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Click here to take the quiz
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From Hidden Markov Models to RNNs

▶ Hidden Markov Models (HMMs):

▶ Popular in the 1980s for sequence modeling (e.g., speech
recognition [10]).

▶ Relied on the Markov assumption for hidden states, limiting
their ability to model long-range dependencies.

▶ Recurrent Neural Networks (RNNs):

▶ Introduced to overcome HMM limitations.

▶ Achieved state-of-the-art performance in tasks such as speech
recognition [4].
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Introduction to Vanilla RNNs

▶ Feed-forward neural networks assume data is independent and
identically distributed (i.i.d).

▶ Recurrent Neural Networks (RNNs) [11] process data
sequentially, making them suitable for time-series and other
sequence-based tasks.
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Vanilla RNN Architecture

▶ Objective: Process an input sequence of D-dimensional
vectors x1, . . . , xT to generate d-dimensional hidden states
h1, . . . , hT .

▶ Model Parameters:

▶ Wxh ∈ RD×d : Input-to-hidden weights.

▶ Whh ∈ Rd×d : Hidden-to-hidden weights.

▶ Hidden state at time t:

ht = tanh
(
W T

hhht−1 +W T
xhxt

)
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Gradient Problems

▶ Exploding Gradients:

▶ Occur when gradients become excessively large, destabilizing
model training.

▶ Vanishing Gradients:

▶ Occur when gradients diminish during backpropagation,
preventing the model from learning long-term dependencies.

▶ Often observed in deep or sequential networks when dealing
with long input sequences.
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Addressing Gradient Problems

▶ Solutions to Exploding Gradients:

▶ Gradient Clipping: Caps gradients to stabilize training [9].

▶ Solutions to Vanishing Gradients:

▶ Regularization: Preserves norm consistency during training
[9].

▶ Gated Architectures:

▶ Long Short-Term Memory (LSTM) [5]: Introduces gates to
manage information flow.

▶ Gated Recurrent Unit (GRU) [3]: Simplified alternative to
LSTM.
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Overview of LSTMs

▶ LSTMs were state-of-the-art for tasks like:

▶ Machine Translation [13, 3, 1].

▶ Language Modeling [12].

▶ Time Series Prediction [6].

▶ Robot Reinforcement Learning [2].

▶ Core Idea: Maintain long-term dependencies through a cell
state regulated by gates.

▶ Gates are responsible for filtering information flow:

▶ Input: New information to add.

▶ Forget: Remove irrelevant information.

▶ Output: Decide what to expose to the hidden state.
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The Concept of Gates in LSTMs

▶ Gates use a sigmoid function to scale values between 0 and 1:

σ(z) =
1

1 + e−z

▶ Point-wise multiplication adjusts information based on gate
values.

(a) Filtering a signal using
a sigmoid function and a
neural network

(b) The sigmoid function
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The LSTM Architecture

▶ Each time step has:

▶ Cell State C t : Preserves long-term memory.

▶ Hidden State ht : Represents short-term output.

▶ Transition from (ht−1,C t−1) to (ht ,C t) involves:

1. Filtering with input and forget gates.

2. Generating a memory candidate C̃ t .

3. Updating the cell state and computing the hidden state.
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The LSTM Architecture

▶ Each time step has:

▶ Cell State C t : Preserves long-term memory.

▶ Hidden State ht : Represents short-term output.

▶ Transition from (ht−1,C t−1) to (ht ,C t) involves:

1. Filtering with input and forget gates.

2. Generating a memory candidate C̃ t :

C̃ t = tanh
(
WC [h

t−1, x t ] + bC
)

3. Updating the cell state and computing the hidden state.
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LSTM Gate Operations

▶ Forget Gate: Filters irrelevant past memory.

f t = σ
(
Wf [h

t−1, x t ] + bf
)

▶ Input Gate: Filters new memory candidate.

i t = σ
(
Wi [h

t−1, x t ] + bi
)

▶ Output Gate: Determines visible parts of the cell state.

ot = σ
(
Wo [h

t−1, x t ] + bo
)
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Memory Update and Hidden State

▶ Cell State Update:

C t = f t ◦ C t−1 + i t ◦ C̃ t

▶ Hidden State Update:

ht = ot ◦ tanh(C t)

▶ Result: LSTMs Handle long-term dependencies better than
vanilla RNNs. LSTMs can:

▶ Write: Add new information via the input gate.

▶ Erase: Remove irrelevant information via the forget gate.

▶ Read: Expose relevant memory via the output gate.
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The LSTM Architecture

Figure: LSTM architecture.
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Programming Session 7: Section 1

▶ Section 1: Temporal Processing
using RNNs

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page
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Sequence to Sequence Framework

▶ LSTM/GRU models in Many-to-Many settings require input
and output sequences of the same length (e.g., POS tagging
[15]).

▶ For applications where Tx ̸= Ty (e.g., machine translation),
we need the Sequence to Sequence (Seq2Seq) framework.

▶ Seq2Seq maps an input sequence of length Tx to an output
sequence of length Ty using two components:

1. Encoder: Encodes the input sequence into a fixed-length
representation.

2. Decoder: Generates the output sequence from the encoded
representation.
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Sequence to Sequence Framework
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Encoder and Decoder Components

▶ Encoder:

▶ Maps the input sequence (X 1
i , . . . ,X

Tx

i ) ∈ RTx×Dx into hidden

states h1i , . . . , h
Tx

i .

▶ Final hidden state hTx

i summarizes the input sequence.

▶ Decoder:

▶ Takes the encoder’s last hidden state hTx

i as its initial hidden
state s0i .

▶ Generates the output sequence s1i , . . . , s
Ty

i .
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Example: Seq2seq for machine translation
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Limitations of Classical Models

▶ Challenges with Seq2Seq Framework:

▶ Encoder compresses all input information into a fixed-length
vector, leading to information loss.

▶ Performance degrades for long input sequences.

▶ No mechanism for aligning input and output sequences.

▶ Alignment Intuition:

▶ For each output Y t
i , the model should selectively focus on

relevant parts of the input sequence X t′

i .

▶ Alignment helps determine how much of each X t′

i contributes
to generating Y t

i .
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The Need for Alignment

▶ The following figure shows the desired alignment matrix,
where scores indicate the relevance of each input vector to a
specific output.

Figure: Matrix of alignment scores.
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Addressing the Challenges with Attention

▶ Key Challenges of Seq2Seq:

▶ No explicit mechanism to focus on relevant parts of the input.

▶ Why Attention?

▶ Allows models to dynamically focus on relevant input parts.

▶ Combines perception with a selective memory mechanism for
reasoning.

▶ Applications:

▶ Machine translation.

▶ Time series prediction.

▶ Speech-to-text.
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Attention: Query-Retrieval Modeling

▶ Attention mechanisms are inspired by database
Query-Retrieval Problems:

▶ A query is matched against keys to retrieve values.

▶ The following figure shows a classic hard query retrieval
system.

▶ In attention mechanisms:

▶ Multiple keys can match a query (soft query retrieval).

▶ The result is a weighted sum of values, called the attention
vector.
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Soft Query Retrieval: Steps

▶ Given: a query q ∈ Rdq , keys (ki )1≤i≤n ∈ Rn×dk , and values
(vi )1≤i≤n ∈ Rn×dv .

▶ Steps:

1. Compute alignment scores ai between the query and each key:

ai = a(q, ki ) ∀i ∈ {1, . . . , n}.

2. Normalize scores to get attention weights αi using a
distribution function (e.g., softmax):

αi =
eai∑n
j=1 e

aj
.

3. Compute the attention vector as a weighted sum of values:

A(q,K ,V ) =
n∑

i=1

αivi .
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Alignment Functions

▶ Alignment functions compute similarity between query q and
keys ki :

Function Equation
Dot Product a(q, ki ) = qTki

Scaled Dot Product a(q, ki ) =
qT ki√
dk

Luong’s
Multiplicative a(q, ki ) = qTWki
Bahdanau’s
Additive a(q, ki ) = vTa tanh(W1q +W2ki )

Feature-based a(q, ki ) = W T
impact(W1ϕ1(ki ) +W2ϕ2(q) + b)

Kernel Method a(q, ki ) = ϕ(q)Tϕ(ki )

Table: Common Alignment Functions.
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Soft and Sparse Attention

▶ Soft Attention:

▶ Uses dense alignments with a softmax function:

αi =
eai∑n
j=1 e

aj
.

▶ Sparse Attention:

▶ Assigns non-zero probabilities to only a few values.

▶ Examples:

▶ Sparsemax [7].

▶ Sparse Entmax [8].

▶ The attention vector combines weighted values:

A(q,K ,V ) =
n∑

i=1

αivi .
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Soft Query Retrieval Summary
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Sequence to Sequence with Attention

▶ Objective: Learn a mapping function Φθ from input sequences
to output sequences.

(Ŷ 1
i , . . . , Ŷ

Ty

i ) = Φθ(X
1
i , . . . ,X

Tx
i ).

▶ Components of Φθ:

1. Encoder: Maps input sequence to hidden states h1i , . . . , h
Tx

i .

2. Attention Layer: Computes context vector c
ty
i for each

output step.

3. Decoder: Generates output sequence using attention and
decoder states.
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Sequence to Sequence with Attention
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The Encoder

▶ The encoder can be a GRU model or an LSTM model that
transforms input sequence (X 1

i , . . . ,X
Tx
i ) into hidden states

(h1i , . . . , h
Tx
i ).

▶ The GRU Model
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The Attention Layer

▶ Assigns weights to encoder hidden states to compute a
context vector c

ty
i :

c
ty
i =

Tx∑
tx=1

α
<ty ,tx>
i htxi .

▶ Steps:

1. Compute alignment scores e
<ty ,tx>
i between decoder hidden

state s
ty−1
i and encoder hidden states htxi .

2. Normalize scores into attention weights α
<ty ,tx>
i using a

distribution function (e.g., softmax).

3. Calculate context vector c
ty
i as a weighted sum of encoder

hidden states.
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The Attention Layer

▶ Calculating the weights: α
<ty ,tx>
i for all tx ∈ {1, . . . ,Tx}:
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The Decoder and Application-Specific Final Layer

▶ Decoder: Combines:

▶ Previous hidden state s
ty−1
i ,

▶ Context vector c
ty
i (from the attention mechanism),

▶ To generate the decoder hidden state s
ty
i .

▶ Final Layer: Maps s
ty
i to the output prediction Ŷ

ty
i .

▶ The nature of the final layer depends on the application:

▶ Machine Translation: Dense layer with a softmax activation
to predict the next word in a target language.

▶ Text Generation: Softmax-based layer for generating
characters or tokens.

▶ Time Series Forecasting: Regression output layer for
predicting continuous values, such as stock prices or energy
consumption.
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Introduction to the Transformer

▶ The paper ”Attention is All You Need” [14] introduced a
groundbreaking model called the Transformer.

▶ Key contributions:

▶ Eliminates the need for recurrent units (e.g., RNNs, LSTMs) in
sequence-to-sequence tasks.

▶ Fully relies on self-attention mechanisms for capturing
dependencies.

▶ The Transformer model has revolutionized sequence modeling
tasks such as machine translation, text summarization, and
more.
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Introduction to the Transformer

▶ The following figure illustrates the full Transformer
architecture.

Figure: The Transformer Architecture [14].
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Creating a Contextual Embedding with Self-Attention

▶ Given a sequence of D-dimensional input vectors (X t)1≤t≤T ,
we project each vector X t into:

▶ Query space: qt = W T
Q X t , WQ ∈ RD×dq ,

▶ Key space: k t = W T
K X t , WK ∈ RD×dk ,

▶ Value space: v t = W T
V X t , WV ∈ RD×dv .

▶ Objective: Create a contextual embedding for each query
qt , leveraging all keys (kt

′
)1≤t′≤T and values (v t

′
)1≤t′≤T .

▶ Intuition: Compute the attention weights α<t,t′> to
determine how much each value v t

′
contributes to the

embedding A
(
qt , (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
.
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Creating a Contextual Embedding with Self-Attention
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Computing the Contextual Embedding

▶ Use the scaled dot product alignment function [14] to
compute similarity scores:

e<t,t′> =
qt · kt′√

dk

▶ Convert similarity scores to attention weights using the
softmax distribution:

α<t,t′> =
e<t,t′>∑T
s=1 e

<t,s>

▶ Compute the contextual embedding:

A
(
qt , (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
=

T∑
t′=1

α<t,t′>v t
′
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Scaled Dot Product Attention Matrix

▶ To compute contextual embeddings for all input vectors
(X t)1≤t≤T , we define:

Q =

q1

...
qT

 ∈ RT×dq , K =

k1

...
kT

 ∈ RT×dk , V =

v1

...
vT

 ∈ RT×dv .

▶ Each qt , kt , v t is computed using projection matrices:

qt = W T
Q X t , kt = W T

K X t , v t = W T
V X t .

▶ Q,K ,V represent the query, key, and value matrices,
respectively.
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Scaled Dot Product Attention Matrix

▶ Definition:

A(Q,K ,V ) := Softmax

(
QKT

√
dk

)
V .

▶ Explanation:

▶ QKT
√
dk
: Computes pairwise similarities between queries and keys.

▶ Softmax: Converts similarities into attention weights.

▶ Multiplication with V : Aggregates values using attention
weights.

▶ Each row of A(Q,K ,V ) corresponds to:

A(qt ,K ,V ) =
T∑

t′=1

α<t,t′>v t
′
, ∀t ∈ {1, . . . ,T}.
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MultiHead Attention (MHA)

▶ Objective: Extend the attention mechanism to multiple
heads to capture diverse notions of similarity.

▶ Attention mechanism is applied h times:

A
(
QW h′

Q ,KW h′
K ,VW h′

V

)
for h′ ∈ {1, . . . , h}.

▶ Projection matrices for each head h′:

W h′
Q ∈ Rdq×pq , W h′

K ∈ Rdk×pk , W h′
V ∈ Rdv×pv .

▶ Outputs are concatenated and projected:

P = concat (A1, . . . ,Ah)Wo ∈ RTq×po .
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Scaled Dot Product Attention Generalization

▶ The following figure illustrates MHA with h attention heads
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Positional Encoding: Intuition and Key Idea

▶ Objective: Incorporate positional information into the
permutation-invariant attention mechanism to reflect the
order of sequence elements.

▶ Intuition:

▶ Positions in a sequence need a unique representation to
differentiate elements based on their location.

▶ Shifting a positional encoding by k steps results in a consistent
transformation that preserves relative distances.

▶ Key Idea:

▶ Add positional encoding vectors p1, . . . , pT ∈ RD to input
embeddings X 1, . . . ,XT .

▶ Use periodic functions (sine and cosine) to define the positional
encodings in a way that captures relative positions effectively.
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Positional Encoding: Method and Properties

▶ Method:

▶ Positional encoding at step t:

ptd =

{
sin(wd t), if d is odd,

cos(wd t), if d is even.

Where wd = 1

10000
2d
D

ensures unique frequencies for different

dimensions.

▶ Positional encodings are added to input embeddings:

X̃ t = X t + pt .

▶ Properties:

▶ Shift Consistency: Shifting pt by k steps aligns with pt+k .

▶ Relative Distance Encoding: The sine and cosine functions
ensure relative positional information is preserved across
sequences.
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The Transformer Architecture

▶ Sequence-to-Sequence Model: Built entirely on attention
mechanisms, eliminating recurrent units.

▶ Core Components:

▶ Multi-Head Attention Layer: Captures different notions of
similarity.

▶ Feed-Forward Layer: Applies pointwise transformations.

▶ Normalization Layer: Ensures stability and accelerates
convergence.

▶ Architecture Overview: Combines stacked encoder and
decoder layers to process and generate sequences efficiently.
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The Encoder Layer

▶ Objective: Generate attention-based contextual embeddings
that focus on relevant parts of the input sequence.

▶ Structure:

▶ Stack of N = 6 identical layers.

▶ Each layer consists of:

▶ Multi-Head Self-Attention: Re-averages value vectors for
contextual embeddings.

▶ Feed-Forward Layer: Fully connected, applied pointwise.

▶ Residual Connections and Normalization: Added after each
sub-layer.

▶ Output Dimension: dmodel = 512 for all layers.
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The Encoder Layer in the Transformer
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The Decoder Layer

▶ Objective: Retrieve and use information from encoder
outputs to generate target sequences.

▶ Structure:

▶ Stack of N = 6 identical layers.

▶ Each layer includes:

▶ Masked Multi-Head Self-Attention: Prevents information
leakage (look-ahead masking).

▶ Multi-Head Attention: Queries the encoder outputs.

▶ Feed-Forward Layer: Applies pointwise transformations.

▶ Residual Connections and Normalization: Enhance gradient
flow and stability.
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The Decoder Layer in the Transformer
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The Complete Transformer Architecture

▶ Input Processing:

▶ Input sequence X = (X 1, . . . ,XTx ) embedded and combined
with positional encodings.

▶ Encoder outputs context-aware representations
H = (h1, . . . , hTx ).

▶ Decoding Process:

▶ Decoder uses:

▶ Self-Attention: Processes previously generated tokens with
masked attention.

▶ Encoder-Decoder Attention: Focuses on encoder outputs H
to generate context for predictions.

▶ Outputs generated step-by-step using linear and softmax layers.
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The Transformer Architecture
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Programming Session 7: Section 2

▶ Section 2: Coding the Transformer
Architecture

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page
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Variable Selection Network (VSN)

▶ Explore the Variable Selection Network (VSN): Click here
for the detailed implementation

Hachem MADMOUN ICBS June 12, 2025 65 / 82

https://colab.research.google.com/drive/1_wQoRnnKuuVVQvN-dhVUulgaJM7MQCXI?usp=sharing
https://colab.research.google.com/drive/1_wQoRnnKuuVVQvN-dhVUulgaJM7MQCXI?usp=sharing


Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 66 / 82



Temporal Fusion Transformer Architecture

▶ Overview: A specialized deep learning model for time series
forecasting with the following components:

▶ Variable Selection Networks (VSN):

▶ Dynamically select the most relevant features from static,
time-varying known features, and time-varying unknown
features.

▶ Employ Gated Residual Networks for feature transformation
and importance estimation.

▶ Sequence-to-Sequence Framework:

▶ Encoder-decoder architecture for multi-step forecasting.

▶ Encoder processes historical data, while the decoder generates
future predictions.
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Temporal Fusion Transformer Architecture

▶ Masked Multi-Head Attention:

▶ Enables context-aware forecasting by focusing on relevant time
steps in the past.

▶ Prevents information leakage by masking future time steps
during decoding.

▶ Gated Residual Networks (GRN):

▶ Adds non-linear transformations and flexible gating
mechanisms.

▶ Regularizes and improves robustness across diverse datasets.
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TFT Architecture: High-Level View
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Programming Session 8: TFT

▶ Objective: Implement and experiment with the Temporal
Fusion Transformer (TFT) for forecasting realized volatility.

▶ Dataset: Realized volatility data from 31 financial indices.

▶ Goals:

▶ Build the TFT model architecture.

▶ Train the model on time series data with static, time-varying
known, and time-varying unknown features.

▶ Evaluate predictions and interpret model outputs.
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Results: Time Series Prediction

▶ Task: Forecast realized volatility for 31 indices.

▶ Outcome: Example of predicted vs. actual realized volatility
for two indices.
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Results: Attention Weights

▶ Objective: Understand how the model uses historical data for
forecasting by highlighting the most influential historical time
steps.
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Results: Feature Importance

▶ Objective: Quantify the impact of input features on
predictions.
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Click here to take the quiz
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Click here to participate in the poll
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Thank you for your attention
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“LSTM neural networks for language modeling”. In:
Thirteenth annual conference of the international speech
communication association. 2012.

Hachem MADMOUN ICBS June 12, 2025 81 / 82



References IV

[13] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to
sequence learning with neural networks”. In: Advances in
neural information processing systems. 2014, pp. 3104–3112.

[14] Ashish Vaswani et al. “Attention is all you need”. In:
Advances in neural information processing systems 30
(2017).

[15] Peilu Wang et al. “Part-of-speech tagging with bidirectional
long short-term memory recurrent neural network”. In: arXiv
preprint arXiv:1510.06168 (2015).

Hachem MADMOUN ICBS June 12, 2025 82 / 82


	Position of the Problem
	Temporal Processing using RNNs
	The Transformer Architecture
	The Variable Selection Network
	The TFT Architecture
	Programming Session: Forecasting daily realized volatility of 31 stock indices
	References

