
Systematic Trading Strategies with Machine
Learning Algorithms

Time Series Forecasting with Neural Networks

June 12, 2025

Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 1 / 82

Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 2 / 82

Position of the Problem

▶ Goal: Predict multiple future time steps for a target variable
(y ti) using:

▶ Past observations of the target variable.

▶ Additional features that provide context and improve
forecasting accuracy.

▶ Multiple time series:

▶ We consider several entities i ∈ {1, . . . ,N}, each associated
with its own time series (y t

i)t−Tb+1≤t≤t+Tf
.

▶ Examples of entities:

▶ Finance: Volatility for different stocks in financial markets.

▶ Energy: Consumption or production across multiple regions.

▶ Traffic: Flow rates at various locations.

Hachem MADMOUN ICBS June 12, 2025 3 / 82

Position of the Problem

▶ Let us consider an entity i at time t:

▶ We aim to predict the future values of the univariate time
series (y ti)t−Tb+1≤t≤t+Tf

:

▶ The past values in a Tb sized window of the target time series:
(y t−Tb+1

i , . . . , y t
i)

▶ The future values up to the horizon Tf : (y
t+1
i , . . . , y t+Tf

i)

▶ There are 3 possible inputs:

Name Notation
Static attributes si ∈ Rds

Time varying unknown (z t−Tb+1
i , . . . , z ti) ∈ RTb×dz

Time varying known (x t+1
i , . . . , x t+Tf

i) ∈ RTf ×dx

Table: Types of Inputs

Hachem MADMOUN ICBS June 12, 2025 4 / 82

Position of the Problem

▶ Features for Prediction:

▶ Static Attributes:

▶ Fixed characteristics of each financial asset.

▶ Example: Industry sector or market capitalization of a stock.

▶ Time-Varying Known Features:

▶ Features whose future values are available or predictable.

▶ Example: Economic calendar events, such as interest rate
decisions or earnings announcements.

▶ Time-Varying Unknown Features:

▶ Sequential features observed only up to the present time.

▶ Example: Recent trends in stock price movements or realized
volatility.

Hachem MADMOUN ICBS June 12, 2025 5 / 82

Position of the Problem

▶ Let Q be the set of quantiles that interest us. For this
example, Q = {0.1, 0.5, 0.9}.

▶ The model outputs for each time step t + tf (for
tf ∈ {1, . . . ,Tf }) the prediction associated with each quantile
q ∈ Q, denoted as ŷ t+tf

i (q).

▶ Thus, for each tf ∈ {1, . . . ,Tf }, the output vector at each
time step t + tf is given by:

ŷ t+tf
i =


...

ŷ t+tf
i (q)

...


q∈Q

Hachem MADMOUN ICBS June 12, 2025 6 / 82

Position of the Problem

Example: The following graph summarizes the previous
notations:

Hachem MADMOUN ICBS June 12, 2025 7 / 82

The Learning Problem

▶ To train the model, we compare the predictions ŷ t+tf
i ∈ R|Q|

to the true values y t+tf
i for all tf ∈ {1, . . . ,Tf }.

▶ The loss function is defined as:

L (B, θ) =
∑
i∈B

∑
q∈Q

Tf∑
tf =1

QLq
(
y t+tf
i , ŷ t+tf

i (q)
)

|B|Tf

▶ Where:

▶ B is the batch of training data.

▶ ∀y , ŷ ∈ R, QLq(y , ŷ) = q(y − ŷ)+ + (1− q)(ŷ − y)+

▶ Equivalently:

QLq(y , ŷ) = max ((q − 1)(y − ŷ), q(y − ŷ))

Hachem MADMOUN ICBS June 12, 2025 8 / 82

Click here to take the quiz

Hachem MADMOUN ICBS June 12, 2025 9 / 82

https://forms.gle/ygCyJxZK3u1ZWXiV9

Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 10 / 82

From Hidden Markov Models to RNNs

▶ Hidden Markov Models (HMMs):

▶ Popular in the 1980s for sequence modeling (e.g., speech
recognition [10]).

▶ Relied on the Markov assumption for hidden states, limiting
their ability to model long-range dependencies.

▶ Recurrent Neural Networks (RNNs):

▶ Introduced to overcome HMM limitations.

▶ Achieved state-of-the-art performance in tasks such as speech
recognition [4].

Hachem MADMOUN ICBS June 12, 2025 11 / 82

Introduction to Vanilla RNNs

▶ Feed-forward neural networks assume data is independent and
identically distributed (i.i.d).

▶ Recurrent Neural Networks (RNNs) [11] process data
sequentially, making them suitable for time-series and other
sequence-based tasks.

Hachem MADMOUN ICBS June 12, 2025 12 / 82

Vanilla RNN Architecture

▶ Objective: Process an input sequence of D-dimensional
vectors x1, . . . , xT to generate d-dimensional hidden states
h1, . . . , hT .

▶ Model Parameters:

▶ Wxh ∈ RD×d : Input-to-hidden weights.

▶ Whh ∈ Rd×d : Hidden-to-hidden weights.

▶ Hidden state at time t:

ht = tanh
(
W T

hhht−1 +W T
xhxt

)

Hachem MADMOUN ICBS June 12, 2025 13 / 82

Gradient Problems

▶ Exploding Gradients:

▶ Occur when gradients become excessively large, destabilizing
model training.

▶ Vanishing Gradients:

▶ Occur when gradients diminish during backpropagation,
preventing the model from learning long-term dependencies.

▶ Often observed in deep or sequential networks when dealing
with long input sequences.

Hachem MADMOUN ICBS June 12, 2025 14 / 82

Addressing Gradient Problems

▶ Solutions to Exploding Gradients:

▶ Gradient Clipping: Caps gradients to stabilize training [9].

▶ Solutions to Vanishing Gradients:

▶ Regularization: Preserves norm consistency during training
[9].

▶ Gated Architectures:

▶ Long Short-Term Memory (LSTM) [5]: Introduces gates to
manage information flow.

▶ Gated Recurrent Unit (GRU) [3]: Simplified alternative to
LSTM.

Hachem MADMOUN ICBS June 12, 2025 15 / 82

Overview of LSTMs

▶ LSTMs were state-of-the-art for tasks like:

▶ Machine Translation [13, 3, 1].

▶ Language Modeling [12].

▶ Time Series Prediction [6].

▶ Robot Reinforcement Learning [2].

▶ Core Idea: Maintain long-term dependencies through a cell
state regulated by gates.

▶ Gates are responsible for filtering information flow:

▶ Input: New information to add.

▶ Forget: Remove irrelevant information.

▶ Output: Decide what to expose to the hidden state.

Hachem MADMOUN ICBS June 12, 2025 16 / 82

The Concept of Gates in LSTMs

▶ Gates use a sigmoid function to scale values between 0 and 1:

σ(z) =
1

1 + e−z

▶ Point-wise multiplication adjusts information based on gate
values.

(a) Filtering a signal using
a sigmoid function and a
neural network

(b) The sigmoid function

Hachem MADMOUN ICBS June 12, 2025 17 / 82

The LSTM Architecture

▶ Each time step has:

▶ Cell State C t : Preserves long-term memory.

▶ Hidden State ht : Represents short-term output.

▶ Transition from (ht−1,C t−1) to (ht ,C t) involves:

1. Filtering with input and forget gates.

2. Generating a memory candidate C̃ t .

3. Updating the cell state and computing the hidden state.

Hachem MADMOUN ICBS June 12, 2025 18 / 82

The LSTM Architecture

▶ Each time step has:

▶ Cell State C t : Preserves long-term memory.

▶ Hidden State ht : Represents short-term output.

▶ Transition from (ht−1,C t−1) to (ht ,C t) involves:

1. Filtering with input and forget gates.

2. Generating a memory candidate C̃ t :

C̃ t = tanh
(
WC [h

t−1, x t] + bC
)

3. Updating the cell state and computing the hidden state.

Hachem MADMOUN ICBS June 12, 2025 19 / 82

LSTM Gate Operations

▶ Forget Gate: Filters irrelevant past memory.

f t = σ
(
Wf [h

t−1, x t] + bf
)

▶ Input Gate: Filters new memory candidate.

i t = σ
(
Wi [h

t−1, x t] + bi
)

▶ Output Gate: Determines visible parts of the cell state.

ot = σ
(
Wo [h

t−1, x t] + bo
)

Hachem MADMOUN ICBS June 12, 2025 20 / 82

Memory Update and Hidden State

▶ Cell State Update:

C t = f t ◦ C t−1 + i t ◦ C̃ t

▶ Hidden State Update:

ht = ot ◦ tanh(C t)

▶ Result: LSTMs Handle long-term dependencies better than
vanilla RNNs. LSTMs can:

▶ Write: Add new information via the input gate.

▶ Erase: Remove irrelevant information via the forget gate.

▶ Read: Expose relevant memory via the output gate.

Hachem MADMOUN ICBS June 12, 2025 21 / 82

The LSTM Architecture

Figure: LSTM architecture.

Hachem MADMOUN ICBS June 12, 2025 22 / 82

Click here to take the quiz

Hachem MADMOUN ICBS June 12, 2025 23 / 82

https://forms.gle/Z8uRveXwSdCUuHgD6

Programming Session 7: Section 1

▶ Section 1: Temporal Processing
using RNNs

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page

Hachem MADMOUN ICBS June 12, 2025 24 / 82

https://colab.research.google.com/drive/19YX1N1_UFSjYqKvFkalo-AJq_-1CgAOz?usp=sharing
https://colab.research.google.com/drive/19YX1N1_UFSjYqKvFkalo-AJq_-1CgAOz?usp=sharing
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/

Sequence to Sequence Framework

▶ LSTM/GRU models in Many-to-Many settings require input
and output sequences of the same length (e.g., POS tagging
[15]).

▶ For applications where Tx ̸= Ty (e.g., machine translation),
we need the Sequence to Sequence (Seq2Seq) framework.

▶ Seq2Seq maps an input sequence of length Tx to an output
sequence of length Ty using two components:

1. Encoder: Encodes the input sequence into a fixed-length
representation.

2. Decoder: Generates the output sequence from the encoded
representation.

Hachem MADMOUN ICBS June 12, 2025 25 / 82

Sequence to Sequence Framework

Hachem MADMOUN ICBS June 12, 2025 26 / 82

Encoder and Decoder Components

▶ Encoder:

▶ Maps the input sequence (X 1
i , . . . ,X

Tx

i) ∈ RTx×Dx into hidden

states h1i , . . . , h
Tx

i .

▶ Final hidden state hTx

i summarizes the input sequence.

▶ Decoder:

▶ Takes the encoder’s last hidden state hTx

i as its initial hidden
state s0i .

▶ Generates the output sequence s1i , . . . , s
Ty

i .

Hachem MADMOUN ICBS June 12, 2025 27 / 82

Example: Seq2seq for machine translation

Hachem MADMOUN ICBS June 12, 2025 28 / 82

Limitations of Classical Models

▶ Challenges with Seq2Seq Framework:

▶ Encoder compresses all input information into a fixed-length
vector, leading to information loss.

▶ Performance degrades for long input sequences.

▶ No mechanism for aligning input and output sequences.

▶ Alignment Intuition:

▶ For each output Y t
i , the model should selectively focus on

relevant parts of the input sequence X t′

i .

▶ Alignment helps determine how much of each X t′

i contributes
to generating Y t

i .

Hachem MADMOUN ICBS June 12, 2025 29 / 82

The Need for Alignment

▶ The following figure shows the desired alignment matrix,
where scores indicate the relevance of each input vector to a
specific output.

Figure: Matrix of alignment scores.

Hachem MADMOUN ICBS June 12, 2025 30 / 82

Addressing the Challenges with Attention

▶ Key Challenges of Seq2Seq:

▶ No explicit mechanism to focus on relevant parts of the input.

▶ Why Attention?

▶ Allows models to dynamically focus on relevant input parts.

▶ Combines perception with a selective memory mechanism for
reasoning.

▶ Applications:

▶ Machine translation.

▶ Time series prediction.

▶ Speech-to-text.

Hachem MADMOUN ICBS June 12, 2025 31 / 82

Attention: Query-Retrieval Modeling

▶ Attention mechanisms are inspired by database
Query-Retrieval Problems:

▶ A query is matched against keys to retrieve values.

▶ The following figure shows a classic hard query retrieval
system.

▶ In attention mechanisms:

▶ Multiple keys can match a query (soft query retrieval).

▶ The result is a weighted sum of values, called the attention
vector.

Hachem MADMOUN ICBS June 12, 2025 32 / 82

Soft Query Retrieval: Steps

▶ Given: a query q ∈ Rdq , keys (ki)1≤i≤n ∈ Rn×dk , and values
(vi)1≤i≤n ∈ Rn×dv .

▶ Steps:

1. Compute alignment scores ai between the query and each key:

ai = a(q, ki) ∀i ∈ {1, . . . , n}.

2. Normalize scores to get attention weights αi using a
distribution function (e.g., softmax):

αi =
eai∑n
j=1 e

aj
.

3. Compute the attention vector as a weighted sum of values:

A(q,K ,V) =
n∑

i=1

αivi .

Hachem MADMOUN ICBS June 12, 2025 33 / 82

Alignment Functions

▶ Alignment functions compute similarity between query q and
keys ki :

Function Equation
Dot Product a(q, ki) = qTki

Scaled Dot Product a(q, ki) =
qT ki√
dk

Luong’s
Multiplicative a(q, ki) = qTWki
Bahdanau’s
Additive a(q, ki) = vTa tanh(W1q +W2ki)

Feature-based a(q, ki) = W T
impact(W1ϕ1(ki) +W2ϕ2(q) + b)

Kernel Method a(q, ki) = ϕ(q)Tϕ(ki)

Table: Common Alignment Functions.

Hachem MADMOUN ICBS June 12, 2025 34 / 82

Soft and Sparse Attention

▶ Soft Attention:

▶ Uses dense alignments with a softmax function:

αi =
eai∑n
j=1 e

aj
.

▶ Sparse Attention:

▶ Assigns non-zero probabilities to only a few values.

▶ Examples:

▶ Sparsemax [7].

▶ Sparse Entmax [8].

▶ The attention vector combines weighted values:

A(q,K ,V) =
n∑

i=1

αivi .

Hachem MADMOUN ICBS June 12, 2025 35 / 82

Soft Query Retrieval Summary

Hachem MADMOUN ICBS June 12, 2025 36 / 82

Sequence to Sequence with Attention

▶ Objective: Learn a mapping function Φθ from input sequences
to output sequences.

(Ŷ 1
i , . . . , Ŷ

Ty

i) = Φθ(X
1
i , . . . ,X

Tx
i).

▶ Components of Φθ:

1. Encoder: Maps input sequence to hidden states h1i , . . . , h
Tx

i .

2. Attention Layer: Computes context vector c
ty
i for each

output step.

3. Decoder: Generates output sequence using attention and
decoder states.

Hachem MADMOUN ICBS June 12, 2025 37 / 82

Sequence to Sequence with Attention

Hachem MADMOUN ICBS June 12, 2025 38 / 82

The Encoder

▶ The encoder can be a GRU model or an LSTM model that
transforms input sequence (X 1

i , . . . ,X
Tx
i) into hidden states

(h1i , . . . , h
Tx
i).

▶ The GRU Model

Hachem MADMOUN ICBS June 12, 2025 39 / 82

The Attention Layer

▶ Assigns weights to encoder hidden states to compute a
context vector c

ty
i :

c
ty
i =

Tx∑
tx=1

α
<ty ,tx>
i htxi .

▶ Steps:

1. Compute alignment scores e
<ty ,tx>
i between decoder hidden

state s
ty−1
i and encoder hidden states htxi .

2. Normalize scores into attention weights α
<ty ,tx>
i using a

distribution function (e.g., softmax).

3. Calculate context vector c
ty
i as a weighted sum of encoder

hidden states.

Hachem MADMOUN ICBS June 12, 2025 40 / 82

The Attention Layer

▶ Calculating the weights: α
<ty ,tx>
i for all tx ∈ {1, . . . ,Tx}:

Hachem MADMOUN ICBS June 12, 2025 41 / 82

The Decoder and Application-Specific Final Layer

▶ Decoder: Combines:

▶ Previous hidden state s
ty−1
i ,

▶ Context vector c
ty
i (from the attention mechanism),

▶ To generate the decoder hidden state s
ty
i .

▶ Final Layer: Maps s
ty
i to the output prediction Ŷ

ty
i .

▶ The nature of the final layer depends on the application:

▶ Machine Translation: Dense layer with a softmax activation
to predict the next word in a target language.

▶ Text Generation: Softmax-based layer for generating
characters or tokens.

▶ Time Series Forecasting: Regression output layer for
predicting continuous values, such as stock prices or energy
consumption.

Hachem MADMOUN ICBS June 12, 2025 42 / 82

Click here to take the quiz

Hachem MADMOUN ICBS June 12, 2025 43 / 82

https://forms.gle/WJ915C7EGKLmM29t7

Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 44 / 82

Introduction to the Transformer

▶ The paper ”Attention is All You Need” [14] introduced a
groundbreaking model called the Transformer.

▶ Key contributions:

▶ Eliminates the need for recurrent units (e.g., RNNs, LSTMs) in
sequence-to-sequence tasks.

▶ Fully relies on self-attention mechanisms for capturing
dependencies.

▶ The Transformer model has revolutionized sequence modeling
tasks such as machine translation, text summarization, and
more.

Hachem MADMOUN ICBS June 12, 2025 45 / 82

Introduction to the Transformer

▶ The following figure illustrates the full Transformer
architecture.

Figure: The Transformer Architecture [14].

Hachem MADMOUN ICBS June 12, 2025 46 / 82

Creating a Contextual Embedding with Self-Attention

▶ Given a sequence of D-dimensional input vectors (X t)1≤t≤T ,
we project each vector X t into:

▶ Query space: qt = W T
Q X t , WQ ∈ RD×dq ,

▶ Key space: k t = W T
K X t , WK ∈ RD×dk ,

▶ Value space: v t = W T
V X t , WV ∈ RD×dv .

▶ Objective: Create a contextual embedding for each query
qt , leveraging all keys (kt

′
)1≤t′≤T and values (v t

′
)1≤t′≤T .

▶ Intuition: Compute the attention weights α<t,t′> to
determine how much each value v t

′
contributes to the

embedding A
(
qt , (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
.

Hachem MADMOUN ICBS June 12, 2025 47 / 82

Creating a Contextual Embedding with Self-Attention

Hachem MADMOUN ICBS June 12, 2025 48 / 82

Computing the Contextual Embedding

▶ Use the scaled dot product alignment function [14] to
compute similarity scores:

e<t,t′> =
qt · kt′√

dk

▶ Convert similarity scores to attention weights using the
softmax distribution:

α<t,t′> =
e<t,t′>∑T
s=1 e

<t,s>

▶ Compute the contextual embedding:

A
(
qt , (kt

′
)1≤t′≤T , (v

t′)1≤t′≤T

)
=

T∑
t′=1

α<t,t′>v t
′

Hachem MADMOUN ICBS June 12, 2025 49 / 82

Scaled Dot Product Attention Matrix

▶ To compute contextual embeddings for all input vectors
(X t)1≤t≤T , we define:

Q =

q1

...
qT

 ∈ RT×dq , K =

k1

...
kT

 ∈ RT×dk , V =

v1

...
vT

 ∈ RT×dv .

▶ Each qt , kt , v t is computed using projection matrices:

qt = W T
Q X t , kt = W T

K X t , v t = W T
V X t .

▶ Q,K ,V represent the query, key, and value matrices,
respectively.

Hachem MADMOUN ICBS June 12, 2025 50 / 82

Scaled Dot Product Attention Matrix

▶ Definition:

A(Q,K ,V) := Softmax

(
QKT

√
dk

)
V .

▶ Explanation:

▶ QKT
√
dk
: Computes pairwise similarities between queries and keys.

▶ Softmax: Converts similarities into attention weights.

▶ Multiplication with V : Aggregates values using attention
weights.

▶ Each row of A(Q,K ,V) corresponds to:

A(qt ,K ,V) =
T∑

t′=1

α<t,t′>v t
′
, ∀t ∈ {1, . . . ,T}.

Hachem MADMOUN ICBS June 12, 2025 51 / 82

MultiHead Attention (MHA)

▶ Objective: Extend the attention mechanism to multiple
heads to capture diverse notions of similarity.

▶ Attention mechanism is applied h times:

A
(
QW h′

Q ,KW h′
K ,VW h′

V

)
for h′ ∈ {1, . . . , h}.

▶ Projection matrices for each head h′:

W h′
Q ∈ Rdq×pq , W h′

K ∈ Rdk×pk , W h′
V ∈ Rdv×pv .

▶ Outputs are concatenated and projected:

P = concat (A1, . . . ,Ah)Wo ∈ RTq×po .

Hachem MADMOUN ICBS June 12, 2025 52 / 82

Scaled Dot Product Attention Generalization

▶ The following figure illustrates MHA with h attention heads

Hachem MADMOUN ICBS June 12, 2025 53 / 82

Positional Encoding: Intuition and Key Idea

▶ Objective: Incorporate positional information into the
permutation-invariant attention mechanism to reflect the
order of sequence elements.

▶ Intuition:

▶ Positions in a sequence need a unique representation to
differentiate elements based on their location.

▶ Shifting a positional encoding by k steps results in a consistent
transformation that preserves relative distances.

▶ Key Idea:

▶ Add positional encoding vectors p1, . . . , pT ∈ RD to input
embeddings X 1, . . . ,XT .

▶ Use periodic functions (sine and cosine) to define the positional
encodings in a way that captures relative positions effectively.

Hachem MADMOUN ICBS June 12, 2025 54 / 82

Positional Encoding: Method and Properties

▶ Method:

▶ Positional encoding at step t:

ptd =

{
sin(wd t), if d is odd,

cos(wd t), if d is even.

Where wd = 1

10000
2d
D

ensures unique frequencies for different

dimensions.

▶ Positional encodings are added to input embeddings:

X̃ t = X t + pt .

▶ Properties:

▶ Shift Consistency: Shifting pt by k steps aligns with pt+k .

▶ Relative Distance Encoding: The sine and cosine functions
ensure relative positional information is preserved across
sequences.

Hachem MADMOUN ICBS June 12, 2025 55 / 82

The Transformer Architecture

▶ Sequence-to-Sequence Model: Built entirely on attention
mechanisms, eliminating recurrent units.

▶ Core Components:

▶ Multi-Head Attention Layer: Captures different notions of
similarity.

▶ Feed-Forward Layer: Applies pointwise transformations.

▶ Normalization Layer: Ensures stability and accelerates
convergence.

▶ Architecture Overview: Combines stacked encoder and
decoder layers to process and generate sequences efficiently.

Hachem MADMOUN ICBS June 12, 2025 56 / 82

The Encoder Layer

▶ Objective: Generate attention-based contextual embeddings
that focus on relevant parts of the input sequence.

▶ Structure:

▶ Stack of N = 6 identical layers.

▶ Each layer consists of:

▶ Multi-Head Self-Attention: Re-averages value vectors for
contextual embeddings.

▶ Feed-Forward Layer: Fully connected, applied pointwise.

▶ Residual Connections and Normalization: Added after each
sub-layer.

▶ Output Dimension: dmodel = 512 for all layers.

Hachem MADMOUN ICBS June 12, 2025 57 / 82

The Encoder Layer in the Transformer

Hachem MADMOUN ICBS June 12, 2025 58 / 82

The Decoder Layer

▶ Objective: Retrieve and use information from encoder
outputs to generate target sequences.

▶ Structure:

▶ Stack of N = 6 identical layers.

▶ Each layer includes:

▶ Masked Multi-Head Self-Attention: Prevents information
leakage (look-ahead masking).

▶ Multi-Head Attention: Queries the encoder outputs.

▶ Feed-Forward Layer: Applies pointwise transformations.

▶ Residual Connections and Normalization: Enhance gradient
flow and stability.

Hachem MADMOUN ICBS June 12, 2025 59 / 82

The Decoder Layer in the Transformer

Hachem MADMOUN ICBS June 12, 2025 60 / 82

The Complete Transformer Architecture

▶ Input Processing:

▶ Input sequence X = (X 1, . . . ,XTx) embedded and combined
with positional encodings.

▶ Encoder outputs context-aware representations
H = (h1, . . . , hTx).

▶ Decoding Process:

▶ Decoder uses:

▶ Self-Attention: Processes previously generated tokens with
masked attention.

▶ Encoder-Decoder Attention: Focuses on encoder outputs H
to generate context for predictions.

▶ Outputs generated step-by-step using linear and softmax layers.

Hachem MADMOUN ICBS June 12, 2025 61 / 82

The Transformer Architecture

Hachem MADMOUN ICBS June 12, 2025 62 / 82

Programming Session 7: Section 2

▶ Section 2: Coding the Transformer
Architecture

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page

Hachem MADMOUN ICBS June 12, 2025 63 / 82

https://colab.research.google.com/drive/19YX1N1_UFSjYqKvFkalo-AJq_-1CgAOz?usp=sharing
https://colab.research.google.com/drive/19YX1N1_UFSjYqKvFkalo-AJq_-1CgAOz?usp=sharing
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/

Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 64 / 82

Variable Selection Network (VSN)

▶ Explore the Variable Selection Network (VSN): Click here
for the detailed implementation

Hachem MADMOUN ICBS June 12, 2025 65 / 82

https://colab.research.google.com/drive/1_wQoRnnKuuVVQvN-dhVUulgaJM7MQCXI?usp=sharing
https://colab.research.google.com/drive/1_wQoRnnKuuVVQvN-dhVUulgaJM7MQCXI?usp=sharing

Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 66 / 82

Temporal Fusion Transformer Architecture

▶ Overview: A specialized deep learning model for time series
forecasting with the following components:

▶ Variable Selection Networks (VSN):

▶ Dynamically select the most relevant features from static,
time-varying known features, and time-varying unknown
features.

▶ Employ Gated Residual Networks for feature transformation
and importance estimation.

▶ Sequence-to-Sequence Framework:

▶ Encoder-decoder architecture for multi-step forecasting.

▶ Encoder processes historical data, while the decoder generates
future predictions.

Hachem MADMOUN ICBS June 12, 2025 67 / 82

Temporal Fusion Transformer Architecture

▶ Masked Multi-Head Attention:

▶ Enables context-aware forecasting by focusing on relevant time
steps in the past.

▶ Prevents information leakage by masking future time steps
during decoding.

▶ Gated Residual Networks (GRN):

▶ Adds non-linear transformations and flexible gating
mechanisms.

▶ Regularizes and improves robustness across diverse datasets.

Hachem MADMOUN ICBS June 12, 2025 68 / 82

TFT Architecture: High-Level View

Hachem MADMOUN ICBS June 12, 2025 69 / 82

Outline

Position of the Problem

Temporal Processing using RNNs

The Transformer Architecture

The Variable Selection Network

The TFT Architecture

Programming Session: Forecasting daily realized volatility of 31
stock indices

Hachem MADMOUN ICBS June 12, 2025 70 / 82

Programming Session 8: TFT

▶ Objective: Implement and experiment with the Temporal
Fusion Transformer (TFT) for forecasting realized volatility.

▶ Dataset: Realized volatility data from 31 financial indices.

▶ Goals:

▶ Build the TFT model architecture.

▶ Train the model on time series data with static, time-varying
known, and time-varying unknown features.

▶ Evaluate predictions and interpret model outputs.

Hachem MADMOUN ICBS June 12, 2025 71 / 82

Results: Time Series Prediction

▶ Task: Forecast realized volatility for 31 indices.

▶ Outcome: Example of predicted vs. actual realized volatility
for two indices.

Hachem MADMOUN ICBS June 12, 2025 72 / 82

Results: Attention Weights

▶ Objective: Understand how the model uses historical data for
forecasting by highlighting the most influential historical time
steps.

Hachem MADMOUN ICBS June 12, 2025 73 / 82

Results: Feature Importance

▶ Objective: Quantify the impact of input features on
predictions.

Hachem MADMOUN ICBS June 12, 2025 74 / 82

Click here to take the quiz

Hachem MADMOUN ICBS June 12, 2025 75 / 82

https://forms.gle/curT9hwHD4NauufZA

Click here to participate in the poll

Hachem MADMOUN ICBS June 12, 2025 76 / 82

https://forms.gle/sdG19AhXbuTuMShx8

Thank you for your attention

Hachem MADMOUN ICBS June 12, 2025 78 / 82

References I

[1] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio.
“Neural machine translation by jointly learning to align and
translate”. In: 3rd International Conference on Learning
Representations, ICLR 2015. 2015.

[2] Bram Bakker et al. “Reinforcement Learning with Long
Short-Term Memory.”. In: NIPS. 2001, pp. 1475–1482.

[3] Kyunghyun Cho et al. “Learning phrase representations
using RNN encoder-decoder for statistical machine
translation”. In: Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014). 2014.

[4] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton.
“Speech recognition with deep recurrent neural networks”.
In: 2013 IEEE international conference on acoustics, speech
and signal processing. Ieee. 2013, pp. 6645–6649.

Hachem MADMOUN ICBS June 12, 2025 79 / 82

References II

[5] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory”. In: Neural computation 9.8 (1997),
pp. 1735–1780.

[6] YiFei Li and Han Cao. “Prediction for tourism flow based on
LSTM neural network”. In: Procedia Computer Science 129
(2018), pp. 277–283.

[7] Andre Martins and Ramon Astudillo. “From softmax to
sparsemax: A sparse model of attention and multi-label
classification”. In: International conference on machine
learning. PMLR. 2016, pp. 1614–1623.

[8] André Martins et al. “Sparse and continuous attention
mechanisms”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 20989–21001.

Hachem MADMOUN ICBS June 12, 2025 80 / 82

References III

[9] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On
the difficulty of training recurrent neural networks”. In:
International conference on machine learning. PMLR. 2013,
pp. 1310–1318.

[10] Lawrence Rabiner and Biinghwang Juang. “An introduction
to hidden Markov models”. In: ieee assp magazine 3.1
(1986), pp. 4–16.

[11] David E Rumelhart, Geoffrey E Hinton, and
Ronald J Williams. “Learning representations by
back-propagating errors”. In: nature 323.6088 (1986),
pp. 533–536.

[12] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
“LSTM neural networks for language modeling”. In:
Thirteenth annual conference of the international speech
communication association. 2012.

Hachem MADMOUN ICBS June 12, 2025 81 / 82

References IV

[13] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to
sequence learning with neural networks”. In: Advances in
neural information processing systems. 2014, pp. 3104–3112.

[14] Ashish Vaswani et al. “Attention is all you need”. In:
Advances in neural information processing systems 30
(2017).

[15] Peilu Wang et al. “Part-of-speech tagging with bidirectional
long short-term memory recurrent neural network”. In: arXiv
preprint arXiv:1510.06168 (2015).

Hachem MADMOUN ICBS June 12, 2025 82 / 82

	Position of the Problem
	Temporal Processing using RNNs
	The Transformer Architecture
	The Variable Selection Network
	The TFT Architecture
	Programming Session: Forecasting daily realized volatility of 31 stock indices
	References

