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1 Position of the problem
In this section, we study the optimization problem, which can be written as
follows:

min
θ∈Rd

f(θ) where f(θ) := Es∼P[L(θ, s)], (1)

where:

• The function f is called the objective function.

• The function L is the loss function.

• P is the unknown data distribution on the domain S

• θ is the set of parameters we wish to optimize.

In the following sections, we are going to focus on the Adam optimizer.
Section 2 is a brief introduction to the history of the Adam algorithm. Section
3 is a description of the algorithm. In section 4, we analyze the convergence
behavior of the algorithm in the nonconvex setting.
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2 Brief history of the Adam optimizer
The Adam algorithm was first introduced in 2015 [1]. The authors proposed a
proof of convergence which was found to have problems. In 2018, [3] clarified the
inconsistency of the previous paper and fixed the proof in the convex setting. In
[2], the authors conducted the proof for the non convex case under some useful
parameter settings.

In the following sections, we provide a detailed version of the proof provided
in the original paper [2].

3 Description of the algorithm
The Adam algorithm defined in [2] is summarized in Algorithm 1

Algorithm 1 The Adam Optimizer
Require:

Initial parameter value: θ1 ∈ Rd

Learning rates: {ηt}Tt=1

Decay parameters: 0 ≤ β1, β2 ≤ 1
Stability parameter: ϵ > 0

Ensure: ϵ-First Order Stationary Point θT+1

1: Set m0 = 0,v0 = 0
2: for t = 1 to T do
3: Draw a batch (sit)i∈Bt

from P
4: Compute gt =

1
|Bt|

∑
s∈Bt

∇L(θt, s)

5: Update mt = β1mt−1 + (1− β1) gt
6: Update vt = vt−1 − (1− β2) (vt−1 − gt ◦ gt)
7: Update θt+1 = θt − ηt

mt√
vt+ϵ

4 The convergence behavior of the Adam opti-
mizer

4.1 Preliminaries
We are fetching for First Order Stationary Points. We would like to prove that
under some assumptions on the loss function (not necessarily convex), we can
have:

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
≤ h(T ) with lim

T→+∞
h(T ) = 0

Where T is the number of batches
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4.2 Assumptions
• (A1): We assume the loss function L to be L-smooth, which means that:

∀θ1, θ2 ∈ Rd ∀s ∈ S ∥∇L(θ2, s)−∇L(θ1, s)∥2 ≤ L∥θ2 − θ1∥2 (2)

• (A2): We assume the loss function L to have bounded gradient: i.e,

∃G ∈ R+ ∀θ ∈ Rd ∀s ∈ S ∥∇L(θ, s)∥2 ≤ G (3)

• (A3): We assume the variance of the loss function L to be bounded: i.e,

∀θ ∈ Rd E
[
∥∇L(θ; ξ)−∇L(θ)∥22|Ft

]
≤ σ2 (4)

where the sigma-algebra Ft represents the information known at time t

4.3 The convergence theorem

Theorem 4.3.1 (Convergence of the Adam Algorithm). Let ηt = η for
all t ∈ [T ]. Furthermore, assume that ϵ, β2 and η are chosen such that the
following conditions are satisfied:

η ≤ 2G
√
1− β2

L
(5)

1− β2 ≤ ϵ4

16G2(G+ ϵ)2
(6)

Then, for (θt)t generated using ADAM (Algorithm 1), we have the following
inequality:

1. If the batch size bt is fixed (i.e, bt = b0 for all t). Then,

∃c1, c2 ∈ R+
1

T

T∑
t=1

E
[
∥∇f(θt)∥22

]
≤ c1

T
+ c2 (7)

2. If the batch size bt = b0T for all t. Then,

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
1

T

)
(8)

3. If the batch size in linear in time (i.e, bt = b0t for all t). Then,

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
ln(T )

T

)
(9)

3



4. If the batch size is of the form bt = ⌈b0tγ⌉ for all t (with 0 < γ < 1 ).
Then,

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
1

T γ

)
(10)

Proof. We would like to understand the change in function value between two
successive iterations of the algorithm 1. In the whole proof, we will consider
β1 = 0

1. Showing that the objective function f is L-smooth
For all θ1, θ2 ∈ Rd

∥∇f (θ1)−∇f (θ2)∥2 = ∥∇Es∼P [L (θ1; s)]−∇Es∼P [L (θ2; s)]∥2 (from the definition 1)
= ∥Es∼P [∇L (θ1; s)]− Es∼P [∇L (θ2; s)]∥2
= ∥Es∼P [∇L (θ1; s)−∇L (θ2; s)]∥2
≤ Es∼P [∥∇L (θ1; s)−∇L (θ2; s)∥2]
≤ Es∼P [L ∥θ2 − θ1∥2] (from the assumption 2)
= L∥θ2 − θ1∥2

Therefore, f is L-smooth

2. Deducing the change in the objective value between two succes-
sive iterations.
Let us consider t ∈ [T ]. As f is L-smooth, we can deduce that:

f (θt+1) ≤ f (θt) +∇⊤f (θt) (θt+1 − θt) +
L

2
∥θt+1 − θt∥22 (11)

From the update equations in algorithm 1 we have:

θt+1 = θt − ηt
gt(√
vt + ϵ

)
Which can be expressed component-wise as follows:

∀i ∈ [d] θi,t+1 = θi,t − ηt
gi,t(√
vi,t + ϵ

) (12)

From 11 and 12, we deduce the following inequality:

f (θt+1) ≤ f (θt)−ηt

d∑
i=1

(
[∇f (θt)]i ×

gi,t√
vi,t + ϵ

)
+
Lη2t
2

d∑
i=1

g2
i,t(√

vi,t + ϵ
)2

Let us introduce the following notations for each time t′:
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b′t be the size of Bt′ .
The sigma-algebra Ft′ represents the information known at time t’.

Consequently:

E [f (θt+1) | Ft] ≤ f (θt)−ηt

d∑
i=1

(
[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

| Ft

])
︸ ︷︷ ︸

(a)

+
Lη2t
2

d∑
i=1

E

[
g2
i,t(√

vi,t + ϵ
)2 | Ft

]
︸ ︷︷ ︸

(b)

(13)

3. Bounding the first term (a) in 13
We have:

E
[

gi,t√
vi,t + ϵ

| Ft

]
= E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

+
gi,t√

β2vi,t−1 + ϵ
| Ft

]

= E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]
+ E

[
gi,t√

β2vi,t−1 + ϵ
| Ft

]
︸ ︷︷ ︸

= E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]
+

[∇f(θ)]i√
β2vi,t−1 + ϵ

Which enables us to rewrite (a) defined in 13 as follows:

(a) = −ηt

d∑
i=1

(
[∇f (θt)]i ×

[
[∇f (θt)]i√
β2vi,t−1 + ϵ

+ E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]])

= −ηt

d∑
i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ
−ηt

d∑
i=1

[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]
︸ ︷︷ ︸

(a1)

(14)
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Let us bound the term (a1) in 14:

−ηt

d∑
i=1

[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]

≤

∣∣∣∣∣ηt
d∑

i=1

[∇f (θt)]i × E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]∣∣∣∣∣
≤ ηt

d∑
i=1

| [∇f (θt)]i |

∣∣∣∣∣×E

[
gi,t√
vi,t + ϵ

− gi,t√
β2vi,t−1 + ϵ

| Ft

]∣∣∣∣∣
≤ ηt

d∑
i=1

| [∇f (θt)]i | × E


∣∣∣∣∣ gi,t√

vi,t + ϵ
− gi,t√

β2vi,t−1 + ϵ

∣∣∣∣∣︸ ︷︷ ︸
(a2)

| Ft


(15)

By using the update rule vi,t = β2vi,t−1 + (1− β2)g
2
i,t from algorithm 1,

we can bound the term (a2) in 15:

(a2) = |gi,t|

∣∣∣∣∣ 1
√
vi,t + ϵ

− 1√
β2vi,t−1 + ϵ

∣∣∣∣∣
=

|gi,t|(√
vi,t + ϵ

) (√
β2vi,t−1 + ϵ

) ∣∣∣√vi,t −
√
β2vi,t−1

∣∣∣
=

|gi,t|(√
vi,t + ϵ

) (√
β2vi,t−1 + ϵ

) |vi,t − β2vi,t−1|
√
vi,t +

√
β2vi,t−1

=
|gi,t|(√

vi,t + ϵ
) (√

β2vi,t−1 + ϵ
) (1− β2)g

2
i,t√

β2vi,t−1 + (1− β2)g2
i,t +

√
β2vi,t−1

(by using the update rule)

≤ |gi,t|(√
vi,t + ϵ

) (√
β2vi,t−1 + ϵ

) (1− β2)g
2
i,t√

β2vi,t−1 + (1− β2)g2
i,t

(since
√
β2vi,t−1 ≥ 0)

≤ |gi,t|
ϵ
(√

β2vi,t−1 + ϵ
) (1− β2)g

2
i,t√

(1− β2)g2
i,t

(since √
vi,t ≥ 0 and β2vi,t−1 ≥ 0)

=

√
1− β2g

2
i,t

ϵ
(√

β2vi,t−1 + ϵ
) (16)

From 14, 15 and 16, we deduce the following inequality:
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(a1) ≤ ηt

d∑
i=1

(
| [∇f (θt)]i |

√
1− β2

ϵ
E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

])
(17)

Therefore, we deduce a bound for (a) from 14 and 17:

(a) ≤ −ηt

d∑
i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ
+ηt

d∑
i=1

(
| [∇f (θt)]i |

√
1− β2

ϵ
E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

])
(18)

By using the assumption 3, we can also bound the term | [∇f (θt)]i for all
i ∈ [d].

Indeed,

∀i ∈ [d] |[∇f (θt)]i| ≤ ∥∇f(θt)∥2
:= ∥Es∼P[L(θt, s)]∥2
≤ Es∼P[∥∇L(θt; s)∥]
≤ G (from assumption3)

So,
∀i ∈ [d] |[∇f (θt)]i| ≤ G (19)

From 18 and 19 we deduce:

(a) ≤ −ηt

d∑
i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ
+

ηtG
√
1− β2

ϵ

d∑
i=1

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

]
(20)

4. Bounding the second term (b) in 13

By using the update rule vi,t = β2vi,t−1 + (1− β2)g
2
i,t from algorithm 1

in the expression (b), we get:

7



(b) :=
Lη2t
2

d∑
i=1

E

[
g2
i,t(√

vi,t + ϵ
)2 | Ft

]

=
Lη2t
2

d∑
i=1

E

 g2
i,t(√

β2vi,t−1 + (1− β2) g2
i,t + ϵ

)2 | Ft


≤ Lη2t

2

d∑
i=1

E

[
g2
i,t(√

β2vi,t−1 + ϵ
)2 | Ft

]
(since (1− β2) g

2
i,t ≥ 0)

≤ Lη2t
2ϵ

d∑
i=1

E

[
g2i,t√

β2vi,t−1 + ϵ
| Ft

]
(since

√
β2vi,t−1 ≥ 0)

So,

(b) ≤ Lη2t
2ϵ

d∑
i=1

E

[
g2i,t√

β2vi,t−1 + ϵ
| Ft

]
(21)

5. Combining the upper bounds on (a) and (b) defined in 13

By combining the upper bounds 20 and 21, we get the following inequality:

E [f (θt+1) | Ft] ≤ f (θt)−ηt

d∑
i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ︸ ︷︷ ︸
(c)

+
ηtG

√
1− β2

ϵ

d∑
i=1

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

]
︸ ︷︷ ︸

(d)

+
Lη2t
2ϵ

d∑
i=1

E

[
g2i,t√

β2vi,t−1 + ϵ
| Ft

]
︸ ︷︷ ︸

(e)

(22)

• Bounding the sum of (d) and (e) defined in 22:
We have:

(d) + (e) =

(
ηtG

√
1− β2

ϵ
+

Lη2t
2ϵ

) d∑
i=1

E

[
g2
i,t√

β2vi,t−1 + ϵ
| Ft

]

≤ 1

ϵ

(
ηtG

√
1− β2

ϵ
+

Lη2t
2ϵ

) d∑
i=1

E
[
g2
i,t | Ft

]
(since

√
β2vi,t−1 ≥ 0)

(23)
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• Bounding the expression (c) defined in 22:
To that end, we first need to prove that ∀i ∈ [d] ∀t′ ∈ [T ] vi,t′ ≤ G2.
We can do it by induction on t′.

– It’s true for t′ = 0

– Let’s consider t′ ∈ [T ] such that ∀i ∈ [d] vi,t′−1 ≤ G2. We have:

∀i ∈ [d] vi,t′ = β2vi,t−1 + (1− β2)g
2
i,t

≤ β2G
2 + (1− β2)g

2
i,t (by induction hypothesis)

≤ β2G
2 + (1− β2) ∥gt∥22

= β2G
2 + (1− β2)

∣∣∣∣∣
∣∣∣∣∣ 1bt ∑

s∈Bt

∇L(θt, s)

∣∣∣∣∣
∣∣∣∣∣
2

2

(by definition of gt)

≤ β2G
2 + (1− β2)

1

b2t

∑
s∈Bt

||∇L(θt, s)||22

≤ β2G
2 + (1− β2)

1

b2t

∑
s∈Bt

G2 (by assumption 3)

= β2G
2 + (1− β2)

1

b2t
btG

2

= β2G
2 +

(1− β2)

bt
G2

≤ β2G
2 + (1− β2)G

2 (sincebt ≥ 1)

= G2

We conclude by induction that,

∀i ∈ [d] ∀t′ ∈ [T ] vi,t′ ≤ G2 (24)

Consequently,

(c) := −ηt

d∑
i=1

[∇f (θt)]
2
i√

β2vi,t−1 + ϵ

≤ − ηt√
β2G+ ϵ

d∑
i=1

[∇f (θt)]
2
i (by using 24)

= − ηt√
β2G+ ϵ

∥∇f (θt)∥22 (25)

• Combining the results:
By using the inequalities 23 and 25, the upper bound in 22 becomes:
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E [f (θt+1) | Ft] ≤ f (θt)−
ηt√

β2G+ ϵ
∥∇f (θt)∥22

+
1

ϵ

(
ηtG

√
1− β2

ϵ
+

Lη2t
2ϵ

)
E
[
∥gt∥22 | Ft

]
︸ ︷︷ ︸

(f)

(26)

6. Bounding the last term (f)

Let us introduce the following notations:

ξt :=
1

bt

∑
s∈Bt

(∇L(θt, s)−∇f(θt)) (27)

∀s ∈ Bt Ys := ∇L(θt, s)−∇f(θt) (28)

Y :=
∑
s∈Bt

Ys (29)

Then,

ξt :=
1

bt
Y (30)
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Consequently,

(f) := E
[
∥gt∥22 | Ft

]
= E

∥∥∥∥∥ 1bt ∑
s∈Bt

∇L(θt, s)

∥∥∥∥∥
2

2

| Ft

 (by definition)

= E

∥∥∥∥∥ 1bt ∑
s∈Bt

(∇L(θt, s)−∇f(θt) +∇f(θt))

∥∥∥∥∥
2

2

| Ft


= E

∥∥∥∥∥
(

1

bt

∑
s∈Bt

(∇L(θt, s)−∇f(θt))

)
+∇f(θt)

∥∥∥∥∥
2

2

| Ft


= E

[
∥ξt +∇f(θt)∥22 | Ft

]
(by definition 27)

= E
[
(ξt +∇f(θt))

⊤
(ξt +∇f(θt)) | Ft

]
= E

[
∥ξt∥22 | Ft

]
+ E [ξt | Ft]

⊤︸ ︷︷ ︸
=0

∇f(θt) +∇f(θt)
⊤ E [ξt | Ft]︸ ︷︷ ︸

=0

+∥∇f(θt)∥22

=
1

b2t
E
[
∥Y ∥22 | Ft

]
+ ∥∇f(θt)∥22 (using 30)

=
1

b2t
E


∥∥∥∥∥∥
(∑

s∈Bt

Ys

)⊤(∑
s′∈Bt

Ys′

)∥∥∥∥∥∥
2

2

| Ft

+ ∥∇f(θt)∥22 (using 29)

=
1

b2t

∑
s,s′∈Bt

E
[
Y ⊤
s Ys′ | Ft

]
+ ∥∇f(θt)∥22

=
1

b2t

∑
s,s′∈Bt

s̸=s′

E
[
Y ⊤
s Ys′ | Ft

]
+

1

b2t

∑
s,s′∈Bt

s=s′

E
[
Y ⊤
s Ys′ | Ft

]
+ ∥∇f(θt)∥22

=
1

b2t

∑
s,s′∈Bt

s̸=s′

E [Ys | Ft]
⊤ E [Ys′ | Ft]︸ ︷︷ ︸

=0

+
1

b2t

∑
s∈Bt

E
[
∥Ys∥22 | Ft

]
+ ∥∇f(θt)∥22 (sinceYsYs′ | Ft)

=
1

b2t

∑
s∈Bt

E
[
∥∇L(θt, s)−∇f(θt)∥22 | Ft

]
+ ∥∇f(θt)∥22 (by definition 28)

≤ 1

b2t

∑
s∈Bt

σ2 + ∥∇f(θt)∥22 (using the assumption 4)

≤ σ2

bt
+ ∥∇f(θt)∥22

We conclude the following bound on the (f) term defined in 26:
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(f) ≤ σ2

bt
+ ∥∇f(θt)∥22 (31)

By using the bound 31, the inequality 26 becomes:

E [f (θt+1) | Ft] ≤ f (θt)−
ηt√

β2G+ ϵ
∥∇f (θt)∥22+

1

ϵ

(
ηtG

√
1− β2

ϵ
+

Lη2t
2ϵ

)(
σ2

bt
+ ∥∇f(θt)∥22

)
Which results in the following inequality:

E [f (θt+1) | Ft] ≤ f (θt) + ∥∇f (θt)∥22

(
−ηt√
β2G+ ϵ

+
1

ϵ

(
ηtG

√
1− β2

ϵ
+

Lη2t
2ϵ

))
︸ ︷︷ ︸

(i)

+
ηtσ

2

ϵbt

(
G
√
1− β2

ϵ
+

Lηt
2ϵ

)
︸ ︷︷ ︸

(ii)

(32)

7. Incorporating the assumptions on the hyperparameters
The final step of the proof is to use the conditions on the hyperparameters
to bound (i) and (ii).

• Using the choice of η
Based on the condition 6, the learning rate is chosen to be fixed such
that:

η ≤ 2G
√
1− β2

L
Therefore,

Lη

2ϵ
≤ G

√
1− β2

ϵ
(33)

We can then bound the first term (i) as follows:

(i) := −η

(
1√

β2G+ ϵ
− 1

ϵ

(
G
√
1− β2

ϵ
+

Lηt
2ϵ

))
≤ −η

(
1√

β2G+ ϵ
− 1

ϵ

(
G
√
1− β2

ϵ
+

G
√
1− β2

ϵ

))
(using 33)

= −η

 1√
β2G+ ϵ

− 2G
√
1− β2

ϵ2︸ ︷︷ ︸
(iii)

 (34)
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We can use the inequality 33 to bound the second term (ii) as follows:

(ii) :=
ηtσ

2

ϵbt

(
G
√
1− β2

ϵ
+

Lηt
2ϵ

)
≤ ηtσ

2

ϵbt

(
G
√
1− β2

ϵ
+

G
√
1− β2

ϵ

)
(using 33)

=
2ησ2G

√
1− β2

ϵ2bt
(35)

• Using the choice of β2 to bound (iii)
By using condition 6, we can bound (iii):

2G
√
1− β2

ϵ2
=

√
4G2(1− β2)

ϵ4

≤

√
4G2

ϵ4
ϵ4

16G2(G+ ϵ)2
(using 6)

=
1

2

1

G+ ϵ

≤ 1

2

1√
β2G+ ϵ

(since β2 ≤ 1) (36)

• Deducing a new bound for (i)
From 36, we conclude that:

1√
β2G+ ϵ

− 2G
√
1− β2

ϵ2
≥ 1

2

1√
β2G+ ϵ

The inequality 34 becomes

(i) ≤ − η

2(
√
β2G+ ϵ)

(37)

Finally, by using 37 and 35, we get the following update to the inequality
32:

E [f (θt+1) | Ft] ≤ f (θt)−
η

2(
√
β2G+ ϵ)

∥∇L (θt)∥22 +
2ησ2G

√
1− β2

ϵ2bt

(38)

8. Concluding according to the batch size

Notations:

13



Let us define the following constants:

∆ =
η

2(
√
β2G+ ϵ)

α =
2ησ2G

√
1− β2

ϵ2

The inequality 38 can then be written as follows:

E [f (θt+1) | Ft] ≤ f (θt)−∆ ∥∇L (θt)∥22 +
α

bt
(39)

By taking the expected value of the inequality 39,

E [f (θt+1)] ≤ E [f (θt)]−∆E
[
∥∇L (θt)∥22

]
+

α

bt

Which can be rearranged as follows:

E
[
∥∇L (θt)∥22

]
≤ E [f (θt)]− E [f (θt+1)]

∆
+

α

∆bt
(40)

By summing 40 for all t ∈ [T ], we get:

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ 1

T∆

T∑
t=1

(E [f (θt)]− E [f (θt+1)]) +
α

T∆

T∑
t=1

1

bt

=
1

T∆
(f (θ1)− E [f (θT+1)]) +

α

T∆

T∑
t=1

1

bt
(using telescoping sum)

≤ 1

T∆
(f (θ1)− f (θ∗)) +

α

T∆

T∑
t=1

1

bt
(where θ∗ := argmin

θ
f(θ))

We conclude that:

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ f (θ1)− f (θ∗)

T∆
+

α

T∆

T∑
t=1

1

bt
(41)

• If the batch size is fixed: bt = b0 for all t:
Then, the inequality 41 becomes:

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ f (θ1)− f (θ∗)

T∆
+

α

∆b0

14



Let us denote c1 = f(θ1)−f(θ∗)
∆ and c2 = α

∆b0
, we conclude the first

part 7 of the theorem :

∃c1, c2 ∈ R+
1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1

T
+ c2

• If the batch size bt = b0T for all t:
Then, the inequality 41 becomes:

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1

T
+

c2
T

T∑
t=1

1

T

=
c1 + c2

T

We conclude the part 8 of the theorem, i.e:

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
= O

(
1

T

)

• If the batch size in linear in time (i.e, bt = b0t for all t):
Then, the inequality 41 becomes:

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1

T
+

c2
T

T∑
t=1

1

t︸ ︷︷ ︸
(E1)

(42)

We would like to find an equivalent to (E1).
By applying the mean value theorem to the function Φ : t 7→ ln(t)
between t and t+ 1 (for a fixed t ∈ [T ]), there exists ct ∼

t→+∞
t such

that:

Φ(t+ 1)− Φ(t) =
1

ct
∼ 1

t

As,
∑

( 1t )t diverges, we conclude that:

T∑
t=1

(Φ(t+ 1)− Φ(t)) ∼
t→+∞

T∑
t=1

1

t

By telescoping sum, it implies:

ln(T ) ∼
T→+∞

T∑
t=1

1

t

15



Which gives, by deviding by T:

1

T

T∑
t=1

1

t
∼

T→+∞

ln(T )

T

On the other hand,

1

T
= o

(
ln(T )

T

)
Which gives an equivalent to the bound (E1) in 42:

(E1) ∼
T→+∞

c2
ln(T )

T
(43)

From 41 and 43 we conclude the part 9 of the theorem:

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
ln(T )

T

)

• If the batch size is of the form bt = ⌈b0tγ⌉ for all t (with 0 < γ < 1 ):
Then, the inequality 41 becomes:

1

T

T∑
t=1

E
[
∥∇L (θt)∥22

]
≤ c1

T
+

c2
T

T∑
t=1

1

tγ︸ ︷︷ ︸
(E2)

(44)

We would like to find an equivalent to (E2):
By applying the mean value theorem to the function Ψ : t 7→ 1

1−γ t
1−γ

between t− 1 and t, there exists ct ∼ t such that :

Ψ(t)−Ψ(t− 1) =
1

cγt
∼

t→+∞

1

tγ

And the Riemann series
∑
t

1
tγ diverges (since γ < 1), so we have:

T∑
t=1

(Ψ(t)−Ψ(t− 1)) ∼
t→+∞

T∑
t=1

1

tγ

Hence, by telescoping sum:

T 1−γ

1− γ
∼

T→+∞

T∑
t=1

1

tγ
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Consequently:
c2
T

T∑
t=1

1

tγ
∼

T→+∞

c2
(1− γ)T γ

And since:

1

T
= o

(
1

T γ

)
We conclude the following equivalent to the bound (E2):

(E2) ∼
T→+∞

c2
(1− γ)T γ

(45)

From 41 and 45 we conclude the second part 9 of the theorem:

1

T

T∑
t=1

E
[
∥∇f (θt)∥22

]
= O

(
1

T γ

)
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