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Decision Tree Algorithm for Classification | imosriat cotiege

Business School

Algorithm Decision Tree Learning Algorithm

Require: Training data {(Fj, y;)}"_,, stopping criteria
Ensure: Decision tree T

1: Initialize tree with single root node containing all data

2: while nodes can be split and stopping criteria not met do
3 for each leaf node with region R do
4: Find (j*,7*) that maximizes:
5 16, 7) = I(R) — T 1(R) — Bl i(Rg)
6 Where Ry = {F e R: Fj<7}and Rg ={F € R:
Fi> )

Split node using rule Fjx > 7*
end for

9: end while
10: Assign prediction to each leaf node (majority class)
11: return T

©

Hachem MADMOUN ICBS May 15, 2025 4 /64



Information Gain for Classification I Imperial College

Business School

» Information Gain for feature j and -

threshold 7:
. [Rdl, Rr
G =1 ——
(-/77-) ( ) |R| (RL) |R| (RR) 4 FJ<T -
A ,R .
. | R [ R |
Where: "/

> Ri={FeR:F <7} ; L
» Re={FeR:F>r1} -
» The DT algorithm:
1. For each feature j and possible threshold 7, compute /G(j, 7)
. Select feature j* and threshold 7* that maximize /G

2
3. Split node and create child regions R; and Rg
4. Recursively apply to each child node until stopping criteria met
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Finding the Optimal Split in Regression Trees |  moeria colege

Business School

One Split at t: Total SSE = 33.07

» For a split at value t; on

feature X: " —
> Left region: R
Riere = {xi|xi < t1} il b
> Right region: 2 i
RRright = {xi|x; > t1} =

» For each region, we compute:
» Prediction value: average of y; in the region
» SSE: sum of squared errors in the region

> Optimization objective: Choose feature j and threshold t that
minimizes:

SSEotar = SSE et + SSERight
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Imperial College

Growing a Regression Tree | imoeris college

Two Splits at t: and t:: Total SSE = 3.19

a=25 655

» The prediction function for M

regions (Rm)i<m<m is: ‘
. .

y (Target)
°

M
F(x) = cml{x € R} 3 .

» Where cp, is the average of all — | |
y; for which x; € R,
> After recursive splitting, we end up with multiple regions (leaves).
» Increasing the number of regions leads to lower training error

» To avoid overfitting, we need stopping criteria: Maximum depth,
minimum samples per leaf, minimum error improvement.
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Regression Tree Algorithm | imosriat cotiege

Business School

Algorithm Regression Tree Learning Algorithm

Require: Training data {(Fj, y;)}"_,, stopping criteria
Ensure: Regression tree T
1: Initialize tree with single root node containing all data
while nodes can be split and stopping criteria not met do
for each leaf node with region R do
Find (j*,7*) that minimizes:
SSE(j,7) = 2imer, Vi —yr)? + 2 iFers Vi ~ VRe)’
Where Ry ={F e R: F; <7} and Rg = {F € R :
Fi>7)
Split node using rule Fj= > 7
8: end for
9: end while
10: Assign prediction yg, to each leaf node (average of y; in the
region)
11: return T

*

o
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Ensemble Learning: Bagging | imosriat cotiege

Business School

» Motivation of Ensemble Models: Aggregate weak learners to
build a strong learner

> Bagging Methodology (Bagging: Bootstrap Aggregation):

1. Generate bootstrap samples B, ..., Bg:

> Create B, by picking points from {xi,...,x,} randomly n
times

> A particular x; can appear in B, many times.

2. Train a model per bootstrap:

» Each bootstrap sample trains an independent model

3. Aggregate the predictions:
> Classification: Majority vote across all models

> Regression: Average of individual model predictions

Hachem MADMOUN ICBS May 15, 2025
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Random Forest: Intuition and Overview |

» Random Forest is an
ensemble method that
improves upon bagging
decision trees by
introducing additional
randomness at each
split for each decision
tree:

» During training, at
each node, only
consider a subset
of features

» Result: Less
correlated trees

Hachem MADMOUN
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Bootstrap Bootstrap Bootstrap

Sample 1 Sample b Sample B
Train Trees
For each split: \
Random m features >
Tree 1 Treeb TreeB
v \ / \ 4
Prediction 1 Prediction b Prediction B
A 4 A 4 A 4
Aggregation
Regression: Average
Classification: Majority Vote
Final Prediction
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Random Forest Training Algorithm | imosriat cotiege

Business School

Algorithm Random Forest Algorithm

Require: Training data {(F;,y;)}"_;, number of trees B, features
per split m < p
Ensure: Random Forest model RF
1: for b=1to B do
2: Draw a bootstrap sample B}, of size n from the training data
Initialize tree T, with root node containing data from B,
while nodes in T}, can be split do
for each leaf node with region R do
Randomly select m features from the available p
Find best split (j*,7*) among these m features
Split node using rule Fjx > 7*
end for
10: end while
11: end for
12: return RF ={Ty, Tp,..., Tg}
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AdaBoost: Key Idea 1

Adaptive Sample Weighting

>

Unlike bagging, AdaBoost [2]
does not use uniform sampling

Samples are weighted based on
classification difficulty

Misclassified examples receive
higher weights in subsequent
iterations

The algorithm creates models
sequentially, each one focusing
on correcting previous errors

This adaptive weighting is the
core mechanism behind
boosting’s effectiveness

Hachem MADMOUN
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AdaBoost: Key Idea 2

I Imperial College
Business School

Leveraging Weak Learners (Decision Stumps)

>

AdaBoost builds its power from
simple decision trees (typically
depth=1) called stumps

Individually, each model
performs only slightly better
than random guessing

However, they are
computationally efficient and
resistant to overfitting

The algorithm’s strength comes
from combining many weak
models into a strong ensemble

Hachem MADMOUN ICBS
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AdaBoost: Key Idea 3 | imosriat cotiege

Business School

Performance-Based Model Weighting

» Unlike random forests where all . AdaBoost: Alpha coefficient vs Error rate
trees contribute equally, s
AdaBoost assigns varying )
importance to each model )
©
» The algorithm calculates an 5o
"amount of say” (a;) for each -
classifier based on its accuracy -2
. . -3
» Highly accurate classifiers
receive strong positive weights bo oz ol Eror o8 o

» Random-level performers (error
rate = 0.5) receive zero weight

» Poor performers can contribute
negatively by having their
predictions reversed
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AdaBoost: Key Algorithm Components | imosriat cotiege

Business School

1. How do we determine each model’s contribution?

» Model influence (a) is based on weighted error
e = 3y we(i)L{y; # fe(x)}

> a; = 3In(3=%) where ¢, is the proportion of weighted
misclassnflcatlons

2. How do we adaptively weight training examples?

» Weights are updated after each iteration:
Wt+1( ) X Wt(l) . at(l 21{}’1 f;t(Xl)})

» For binary classification where y; € {0,1} and f;(x;) € {0,1}

» This means weights increase for misclassified examples and decrease
for correctly classified ones

» Weights are normalized to form a probability distribution
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AdaBoost: Ensemble Prediction | Imperial College

Business School

How do we make predictions with the ensemble?

» Final prediction uses a weighted majority vote:

froon(x) = 1 {2_; i) > 5 at}

t=1
» Each weak learner's vote (f;(x) € {0,1}) is weighted by its
performance (o)

» Models with lower error rates have larger influence on the final
prediction

» The threshold is half the sum of all model weights

» When the weighted sum favors class 1, we predict 1; otherwise, we
predict 0
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AdaBoost Algorithm | imosriat cotiege

Business School

Algorithm AdaBoost Algorithm
Require: Training data {(x;,y;)}"_;, x € X, y € {0,1}, number of

end for
return Classification rule: fpoost(x0) = 11{2;1 arfr(xp) >

T
%Zt:l ar}

iterations T
Ensure: AdaBoost model
1: Initialize weights wi(i) =% for i =1:n
2: fort=1to T do
3: Train classifier f; on weighted training data with weights w;
4: Calculate weighted error: e, = Y7, we () L{y; # fe(xi)}
5: Calculate model weight: a; = %In 1;“
6: Scale weights: Wy 1(i) = we(i) - et (1-21yi=f(x)})
. e N — Wi
7: Normalize: wey1(i) = S b1 ()
8:
9:

Hachem MADMOUN ICBS May 15, 2025 19 / 64



AdaBoost Example: First Decision Tree

Key calculations for Tree 1:

I Imperial College
Business School

Tree 1 - Decision Boundary (Alpha: 0.424)

» Initial weights:

" & =5 Lf.';fﬂ’
wy (i) = 0.1 for all samples ¢
» Weighted Error: o ¢
~ 05 d
€1 = 0.300 y - o
s Oo .5
» Model Contribution:
0.2 .9
1 | 1-— €1
a; = =In o
1 2 61 01 0.2 0.3 0.4 70].5 0.6 0.7 0.8
1 | 0.7
= —1n _—
2 0.3
= 0.424
Hachem MADMOUN ICBS May 15, 2025 20 / 64



AdaBoost Example: First Decision Tree

Weight Update Process:

» For misclassified:

wa(i) oc wy (i) - et ™

—0.1- eO.424
» For correctly
classified:
wo(i) o< wy (i) - e™ ™

=0.1- e—0.424

» Weights are then
normalized.

Hachem MADMOUN

I Imperial College
Business School

Sample | x; x |y | wa | A(x) Wy
0 0203|001 0 0.071
1 0306|001 0 0.071
2 0408|0101 0 0.071
3 0707|001 0 0.071
4 06 |04 )01 0.1 0 0.071
5 0404101 0 0.167
6 0.7/03|1]0.1 0 0.167
7 0805|101 1 0.071
8 0808|101 1 0.071
9 03(02]1]0.1 0 0.167

ICBS May 15, 2025 21 / 64



AdaBoost Example: Second Decision Tree

Key calculations for Tree 2:

I Imperial College
Business School

Tree 2 - Decision Boundary (Alpha: 0.650)

» Initial weights:

. & = res o)
wa (i) from previous iteration . ¢
1
» Weighted Error: o0 U
o 05 @
e = 0214 y - »
()
» Model Contribution: ” e ¢
02 ‘
1 | 1-— €2
Q2 = —In 01
2 2 62 01 0.2 0.3 0.4 70].5 0.6 0.7 08
1 | 0.786
= —1n —_—
2 0.214
= 0.650
Hachem MADMOUN ICBS May 15, 2025 22 / 64



AdaBoost Example: Second Decision Tree | imosriat cotiege

Business School

Weight Update Process:

» For misclassified: Sample | x1 | x

y wo h(x) w3
, N e 0 020300071 1 |0.166
ws (i) oc wa(i) - 1 03060 007L| 0 | 0045
= wy(i) - 700 2 040800071 | 0 | 0045
3 0707 ]0]007L| 0 | 0045
> For correctly 4 060400071 1 |O0.166
classified: 5 0410417 0.166 1 0.106
. 6 0703|1]0166| 1 | 0106
w3(7) oc wo(i) - €7 7 08 05| 1] 0071 1 | 0045
= wy(i) - e 06%0 8 080810071 0 |O0.166
9 03|02|1]0166| 1 | 0106

» Weights are then
normalized.
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AdaBoost Example: Third Decision Tree

Key calculations for Tree 3:
» Initial weights:
ws (i) from previous iteration

» Weighted Error: o

e3 = 0.258

» Model Contribution:

a3—1|n<1_63> o
2 €3 '
in(2282)
2 0.258
=0.529
Hachem MADMOUN ICBS

Tree 3 - Decision Boundary (Alpha: 0.529)
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W Red (Class 1)
-
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AdaBoost Example: Third Decision Tree

Weight Update Process:

I Imperial College
Business School

» For misclassified: Sample | x1 | x

y| ws f(x) | wa
. N tas 0 02 03[0 0166 | 0 | 0112
wa(i) oc ws(i) - e 1 0306 |0] 0045 | 0 | 0.031
= ws(i) - 2% 2 040800045 | 0 | 0031
3 0707/0/0.045 1 |0.088
> For correctly 4 06040/ 0.166 0 0.112
classified: 5 0.4]0.4]1]0.106 0 0.206
. 6 07 |03 [1]0106| 1 | 0071
wa(7) oc ws(i) - €7 7 08 05| 1]0045| 1 | 0031
= w3(i) - €795 8 08 ] 08 ] 1] 0.166 1 | o112
9 030210106 0 | 0.206
» Weights are then
normalized.
Hachem MADMOUN ICBS May 15, 2025 25 / 64




AdaBoost Example: Fourth Decision Tree

Key calculations for Tree 4:

I Imperial College
Business School

Tree 4 - Decision Boundary (Alpha: 0.519)

» Initial weights:

. o ey
wy (i) from previous iteration ¢
. 1
» Weighted Error: o0 ©
w05 o
€4 = 0.262 y - y
s e P
» Model Contribution:
0.2 d
1 | 1-— €4
a = x5 n 010] 0.2 0.3 0.4 0.5 0.6 0.7 08
4 2 €4 ) 1
1 | 0.738
= —1n —_—
2 0.262
= 0.519
Hachem MADMOUN ICBS May 15,2025 26 / 64



AdaBoost Example: Fourth Decision Tree | imosriat cotiege

Business School

Weight Update Process:

> For misclassified: Sample | x1 | x

y| wi | fa(x)]| ws
. N e 0 0203]0] 0112 ] 0 | 0076
ws (1) oc wa(i) - i (030600031 1 |0.058
= wy(i) - 2510 2 040800031 1 |O0.058
3 070700088 1 |O0.169
> For correctly 4 0604]0|0112| 1 |o0.214
classified: 5 040411 0.206 1 0.139
, N 6 07 03] 1] 0071 | 1 | 0048
ws(7) oc wa(i) - €7 7 1080510031 1 |0021
= wy(i) - €731 8 08|08[1]0112| 1 [ 0076
9 030210206 1 | 0139

» Weights are then
normalized.
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AdaBoost: Final Ensemble Predictions

Imperial College
Business School

Sample | y | # a1 f a2 f3 a3 fa Q4 fhoost
0 0] 0]0424 |1 |0650 | 0052 | 0 | 0.519 0
1 0] 0]0424 | 0 | 0650 | 0]0529| 1 |0.519 0
2 0|0 ]0424 |0 | 0650| 0 |0529| 1| 0.519 0
3 0] 0|0424 |0 | 0650 | 1]0529]| 1| 0.519 0
4 0|0 ]0424 |1 ]0650| 00529 | 1| 0.519 1
5 1100424 |1 0650 | 00529 | 1| 0.519 1
6 1|0 0424 |1 0650 | 10529 | 1| 0,519 1
7 1|1 1]0424 |1 0650 | 1 |0529 | 1 |0.519 1
8 1110424 |0 0650 | 1 |0529 | 1 |0.519 1
9 1100424 |1 0650 | 00529 | 1| 0.519 1

Hachem MADMOUN
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AdaBoost: Final Decision Boundary | imosriat cotiege

Business School

The Power of Ensemble Learning

Final AdaBoost Decision Boundary with 4 Trees (Accuracy: 90.0%)

=T
» The final decision boundary A SEE
08 o
combines all four weak
classifiers ¢
. s o
» This demonstrates how

AdaBoost transforms simple '
models into sophisticated . ¢ *
classifiers < -
» Accuracy improves from 70% . o
(individual trees) to 90% )
(ensemble) oo e T
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Gradient Boosting (Optional Session Week 5) | imperisicolese

Business School

Algorithm Gradient Boosting Algorithm

Require: Training data {(x;,yi)}"_;, loss function L, number of
trees M, learning rate 7
Ensure: Gradient Boosted model
1: Initialize model with a constant: Fy(x) = argmin>_"_; L(y;, y)
y

2: for m=1to M do

3: Compute pseudo-residuals:
_ 6’L()’:'J:(Xi))] A
fim = — | =322 fori=1:n
" [ OFCa) | F)=Frn1(x) _
4: Fit a new regression tree to the pseudo-residuals rjn,
5: Compute optimal value for each leaf region Rjy:

Yjm = arg min ineij L(yi, Fm—1(xi) + )
Y

6: Update equation: Fp(x) = Fp—1(X) + 1 ¥m
7: end for
8: return Final model Fy(x)

Hachem MADMOUN ICBS May 15, 2025 31/ 64
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Business School

Feedback
Poll

Click here to participate in the poll
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https://forms.gle/BUv6K3F8zokPhSaH9

Hachem MADMOUN

I Imperial College
Business School

Programming Session 4: Introducing
Supervised Learning Algorithms for
Time Series Forecasting

» Section 1: Preprocessing the
Dataset.

» Section 2: Tree based Models for
Time Series Forecasting.

» Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

» Click here to access ccess the
GitHub Page

ICBS May 15, 2025 33 /64


https://colab.research.google.com/drive/1VEmWV7ch6FX_m5Zyq7xjCw_PJXI2Bhtj?usp=sharing
https://colab.research.google.com/drive/1VEmWV7ch6FX_m5Zyq7xjCw_PJXI2Bhtj?usp=sharing
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/
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Supervised Learning - Review | imveria coleos

Supervised Learning;:

» Learn a function f : X — Y from labeled data.

> Feature space X: matrix of features, n observations x m

features.

» Target space Y': vector of n labels (or target values).

Feature Space X
X | Xaz | oo Xim
Xor | Xaz | o Xom
Xo | Xnz | o | Xom

n observations x m features

Hachem MADMOUN

Target Space Y
Vi
ML Model Y
EX3Y
Yn
n target values
ICBS May 15, 2025
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Shallow Neural Network | imperial College

Business School

» Feature vector:
Xj = (X,'l, .. ,X,'m) c R™
» Parameters:
o = (W), b)), (W), b))
> WM e R™*L: weights
connecting input to hidden layer
» b() ¢ RL: biases for hidden layer
> W@ ¢ RLXL: weights
connecting hidden to output
» b® < R: bias for output layer
» Model: f : R™ — R mapping
features to predictions

» Output: y; (category for classification
or continuous value for regression)

Hachem MADMOUN ICBS May 15, 2025 37 / 64



Forward Propagation

> Forall £e{1,2,...,L}:

hig = 01 <ZWk X,k+b )>

» Then the output:
L
Ji=o02 <Z W i+ b(2)>
=1

» 04,05 are activation functions.

» Parameters:
0 = {(W,b1), (W), bi2)}

Hachem MADMOUN ICBS

I Imperial College
Business School

May 15, 2025
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Forward Propagation - Matrix Notation | imosriat cotiege

Business School

» x; € R™ is the input feature vector
» h; € Rt is the hidden layer vector

» The model output y; € R is calculated
as follows:

h; = o1 (WD Tx; 4 b))
9i = oa(W)Th; + b))

» The final output is:

Vi = fa(xi) = 02 ((W(z))Tcn (W(I)Tx,- + b(l)) + b(2))

> Next step: Learning the parameters § = {(W(®) b(1)) (W) b()}
from training data using a loss function

Hachem MADMOUN ICBS May 15, 2025 39 / 64
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Activation Functions

Sigmoid:

1

o(2) = o= € 0.1]

» Used as final activation for binary
classification

» Output interpreted as probability:
_)7,' = P(Y = 1|X,')

Tanh:

< ° 6[—1,1]

tanh(z) = m

» Zero-centered, helps with convergence

» Often used in hidden layers

Hachem MADMOUN ICBS
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Business School

Sigmoid activation function

Tanh activation function
1.00

075-
050
0.25-

000
025~
-050-
075
100 -
B

-2 0 2 4
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RelLU Activation Function | imperial College

Business School

ReLU activation function

ReLU (Rectified Linear Unit): ‘

ReLU(z) = max(0, z)

Faster to compute, computational efficiency

No saturation for positive values, helps with gradient flow
Problem: "dying ReLU” (neurons can get stuck at 0)
Most widely used in hidden layers

Sparse activation: typically 50% of neurons inactive

vV v v v Vv Y

No vanishing gradient for positive inputs

Hachem MADMOUN ICBS May 15, 2025 42 / 64



Leaky ReLU Activation Function | imosriat cotiege

Business School

Leaky ReLU activation function

Leaky RelLU: 3

z if z>0

LeakyReLU(z) = {az <0 X

Leak

Introduced in [4].
Prevents "dying ReLU" problem with small slope «

Typical values for « range from 0.01 to 0.2

>

>

>

» Allows small gradient flow for negative inputs

» Maintains most of the computational efficiency of ReLU
>

Not always superior to ReLU in practice

Hachem MADMOUN ICBS May 15, 2025 43 / 64



ELU Activation Function I Imperial College

Business School

ELU activation function (@ =1)

ELU (Exponential Linear Unit): 2

z ifz>0
aler—1) fz<0

ELU(z) = {

v

Introduced in [1].

v

Smooth curve for negative values, reducing noise

» Approaches —a as z becomes very negative

» Self-regularizing: can help with internal covariate shift
» More computationally expensive than ReLU

» Often produces faster convergence in training

Hachem MADMOUN ICBS May 15, 2025 44 / 64



SELU Activation Function I Imperial College

Business School

SELU activation function

SELU (Scaled ELU): 2

z ifz>0
afer—1) ifz<0

SELU(z) = )\{

Introduced in [3].

Fixed parameters: o~ 1.67 and A =~ 1.05

Scaling factor A enables self-normalization

Automatically preserves mean and variance of inputs
Helps training deep networks without batch normalization

Requires "SELU initialization” (LeCun Normal)
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Introducing Neural Networks

Setting the loss function for Classification and Regression
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Introduction to Loss Functions | imperial College

Business School

» Why do we need loss functions?
» Quantify how well our model fy performs on data
» Provide a differentiable objective to optimize
» Guide the learning of parameters 6
> From predictions to learning:
» Forward propagation gives us: y; = fp(x;)

» Loss function measures: L(¥;, y;) - the discrepancy between
predictions and true values

» QOverall objective:

1
mem ; ;ﬁ(fé(x,),y,)

Hachem MADMOUN ICBS May 15, 2025 47 / 64



Binary Cross Entropy Loss Function - MLE | imosriat cotiege

Business School

v

Dataset: D = {(x;,y;)}7_; where y; € {0,1}

v

Probabilistic view: Neural network outputs represent probabilities

» For binary classification:
VIG{]'??n} infQ(X,'):pg(Y:”X,')

> Log-likelihood for all data:

log L(6) = _ log pa(Y = yilx))
i=1

= lyilog 9i + (1 — yi) log(1 — 3)]
i=1
» The loss function is the normalized negative Log-Likelihood:

1 1<
in—=1 “— min—- log 9 + (1 — y;) log(1 — §;
min —— og L(0) min —— ’gl [vilog 9i + (1 — y;) log(1 — 9]
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Categorical Cross Entropy Loss Function - MLE |

>

Dataset: D = {(x;,y;)}!_; where y; € {1,2,...,K}

» Probabilistic view: Neural network outputs represent probability

distribution over K classes

For multi-class classification:

Vie{l,....,n} §i=f(x;)=(po(Y =1I%;),...,pe(Y = K|x/))
One-hot encoding of target: y; = (yi1, Vi2, - - -, Yik) Where

Yik = Lpy,—g

Log-likelihood for all data:

n K

log £(0) = "log pa(Y = yilxi) = Y > yixlog Ji

i=1 i=1 k=1

The loss function is the normalized negative Log-Likelihood:

1
main—flogE(Q) — mln—f E g Vik log Vi
n
i=1 k=1
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Regression Loss Functions Overview | imosriat cotiege

Business School

Loss Formula Key Properties

MSE | 0.0 — i)
» Differentiable everywhere

» Sensitive to outliers

1 ~
MAE | >0, 1y — Jil
» Less sensitive to outliers

v

Non-differentiable at zero

1\ =3l
MAPE | 1y, Lo |
» Scale-independent
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Optional Programming Session: The
Custom Huber Loss function

» Click here to access the
programming session

Content:

» Tensors and operations in
TensorFlow.

» Computing Gradients with
Autodiff.

» Custom Loss Function: The Huber
Loss.
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Loss Function Guidelines - Classification | Imperial College

Business School

» For classification:

» Binary classification: Binary Cross-Entropy with sigmoid
1 n
Lpce = - z:, [vilog yi + (1 — yi) log(1 — yi)]
=
» Multi-class classification: Categorical Cross-Entropy with

softmax
1 n K
Lcce = - Zl ;Yik log Vik
= =

» Multi-label classification: Binary Cross-Entropy per label

n K
1 n N
Ly = - g g lyik log ik + (1 — yix) log(1 — )]
=1 k=1
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Loss Function Guidelines - Regression | imosriat cotiege
Business School
» For regression:
» Clean data, normal distribution: MSE

n

1 N
Luse = - > i —9)?

i=1
» Data with outliers: MAE
1 n
Lmae = - Z lyi — il
i=1
> Data with outliers (alternative): Huber Loss
= Ly [l gl <o
n Sly; — 9il — 262 otherwise

» Relative error important: MAPE

ﬁMAPE Z |yl|y X 1000/
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Introducing Neural Networks

Learning the parameters using Gradient Descent
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Gradient Descent Algorithm | imosriat cotiege

Business School

Algorithm Gradient Descent Algorithm

Require: Training data {(x;,y;)}"_;, loss function L, learning rate
«, iterations T
Ensure: Optimized parameters 0
1: Initialize parameters 8(9) randomly
2: fort=1to T do
0() = g(t=1) _ o . V,oL(0(t-1)

3 if Convergence criteria met then
4: break

5 end if

6: end for

7. return Final parameters §(7)
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Visualizing Gradient Descent | imosriat cotiege
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Key aspects of Gradient Descent:

» Intuition. MOVG dOthI” in Gradient Descent Optimization

—@— Gradient Descent Path

the direction of steepest a Gilobal imimum 36
descent

» Learning rate « controls step
size:

Parameter 6.

» Too small: slow
convergence

> Too large: overshooting -
or divergence /R

0 2 4
Parameter 61

» For neural networks, loss
landscapes are typically
non-convex, so we often
converge to a local minimum

» In this figure, we reach the
global minimum since the
function is convex
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Introducing Neural Networks

Introducing the Variable Selection Network
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Variable Selection Network (VSN) | imosriat cotiege
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» We will explore the Variable Selection Network (VSN) in
Lecture 7 as part of the Temporal Fusion Transformer
Architecture.

cccccc
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TFT Architecture: High—LeveI View I Imperial College

Business School

Gated Linear Unit
&
Layer Nornalization

Quantile Forecasts < 91+1(0-1) 91+1(05) §1+1(09) - §

Dense

Gated Residual Network

Temporal Fusion Decoder

N
1

T

Position-wise I ¢ i
Feed-forward i
|

’ i

R 3 T

Residual Connections

Attention Layer

Covariate
Encoders

VSN layers

LSTM LSTM
Encoder Decoder

Encoder Decoder [

Variable Variable Variable Variable Variable
Selection Selection Selection Selection Selection
s 1 t f t
S Xt—k Xt Tt+1 v Tt Tiag
tatic v y L it}
Metadata

Past Inputs Known Future Inputs
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Feedback
Poll

Click here to participate in the poll
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Programming Session 4: Introducing
Supervised Learning Algorithms for
Time Series Forecasting

» Section 3: Neural Networks.
» Section 4: Performance Analysis.

» Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

» Click here to access ccess the
GitHub Page
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https://colab.research.google.com/drive/1VEmWV7ch6FX_m5Zyq7xjCw_PJXI2Bhtj?usp=sharing
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Quiz
Time!

Click here to take the quiz
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https://forms.gle/ADNtQ2cx7bbg1j54A

Thank you for your attention
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