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Decision Tree Algorithm for Classification

Algorithm Decision Tree Learning Algorithm

Require: Training data {(Fi , yi )}ni=1, stopping criteria
Ensure: Decision tree T
1: Initialize tree with single root node containing all data
2: while nodes can be split and stopping criteria not met do
3: for each leaf node with region R do
4: Find (j∗, τ∗) that maximizes:

5: IG (j , τ) = I (R)− |RL|
|R| I (RL)− |RR |

|R| I (RR)

6: Where RL = {F ∈ R : Fj ≤ τ} and RR = {F ∈ R :
Fj > τ}

7: Split node using rule Fj∗ > τ∗

8: end for
9: end while

10: Assign prediction to each leaf node (majority class)
11: return T
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Information Gain for Classification

▶ Information Gain for feature j and
threshold τ :

IG (j , τ) = I (R)−|RL|
|R|

I (RL)−
|RR |
|R|

I (RR)

Where:

▶ RL = {F ∈ R : Fj ≤ τ}
▶ RR = {F ∈ R : Fj > τ}

▶ The DT algorithm:

1. For each feature j and possible threshold τ , compute IG (j , τ)

2. Select feature j∗ and threshold τ∗ that maximize IG

3. Split node and create child regions RL and RR

4. Recursively apply to each child node until stopping criteria met
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Finding the Optimal Split in Regression Trees

▶ For a split at value t1 on
feature X :

▶ Left region:
RLeft = {xi |xi ≤ t1}

▶ Right region:
RRight = {xi |xi > t1}

▶ For each region, we compute:

▶ Prediction value: average of yi in the region

▶ SSE: sum of squared errors in the region

▶ Optimization objective: Choose feature j and threshold t that
minimizes:

SSEtotal = SSELeft + SSERight
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Growing a Regression Tree

▶ The prediction function for M
regions (Rm)1≤m≤M is:

f (x) =
M∑

m=1

cm1{x ∈ Rm}

▶ Where cm is the average of all
yi for which xi ∈ Rm

▶ After recursive splitting, we end up with multiple regions (leaves).

▶ Increasing the number of regions leads to lower training error

▶ To avoid overfitting, we need stopping criteria: Maximum depth,
minimum samples per leaf, minimum error improvement.
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Regression Tree Algorithm

Algorithm Regression Tree Learning Algorithm

Require: Training data {(Fi , yi )}ni=1, stopping criteria
Ensure: Regression tree T
1: Initialize tree with single root node containing all data
2: while nodes can be split and stopping criteria not met do
3: for each leaf node with region R do
4: Find (j∗, τ∗) that minimizes:
5: SSE (j , τ) =

∑
i :Fi∈RL

(yi − ȳRL
)2+

∑
i :Fi∈RR

(yi − ȳRR
)2

6: Where RL = {F ∈ R : Fj ≤ τ} and RR = {F ∈ R :
Fj > τ}

7: Split node using rule Fj∗ > τ∗

8: end for
9: end while

10: Assign prediction ȳRm to each leaf node (average of yi in the
region)

11: return T
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Ensemble Learning: Bagging

▶ Motivation of Ensemble Models: Aggregate weak learners to
build a strong learner

▶ Bagging Methodology (Bagging: Bootstrap Aggregation):

1. Generate bootstrap samples B1, . . . ,BB :
▶ Create Bb by picking points from {x1, . . . , xn} randomly n

times

▶ A particular xi can appear in Bb many times.

2. Train a model per bootstrap:
▶ Each bootstrap sample trains an independent model

3. Aggregate the predictions:
▶ Classification: Majority vote across all models

▶ Regression: Average of individual model predictions
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Random Forest: Intuition and Overview

▶ Random Forest is an
ensemble method that
improves upon bagging
decision trees by
introducing additional
randomness at each
split for each decision
tree:

▶ During training, at
each node, only
consider a subset
of features

▶ Result: Less
correlated trees
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Random Forest Training Algorithm

Algorithm Random Forest Algorithm

Require: Training data {(Fi , yi )}ni=1, number of trees B, features
per split m < p

Ensure: Random Forest model RF
1: for b = 1 to B do
2: Draw a bootstrap sample Bb of size n from the training data
3: Initialize tree Tb with root node containing data from Bb

4: while nodes in Tb can be split do
5: for each leaf node with region R do
6: Randomly select m features from the available p
7: Find best split (j∗, τ∗) among these m features
8: Split node using rule Fj∗ > τ∗

9: end for
10: end while
11: end for
12: return RF = {T1,T2, . . . ,TB}
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AdaBoost: Key Idea 1

Adaptive Sample Weighting

▶ Unlike bagging, AdaBoost [2]
does not use uniform sampling

▶ Samples are weighted based on
classification difficulty

▶ Misclassified examples receive
higher weights in subsequent
iterations

▶ The algorithm creates models
sequentially, each one focusing
on correcting previous errors

▶ This adaptive weighting is the
core mechanism behind
boosting’s effectiveness
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AdaBoost: Key Idea 2

Leveraging Weak Learners (Decision Stumps)

▶ AdaBoost builds its power from
simple decision trees (typically
depth=1) called stumps

▶ Individually, each model
performs only slightly better
than random guessing

▶ However, they are
computationally efficient and
resistant to overfitting

▶ The algorithm’s strength comes
from combining many weak
models into a strong ensemble
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AdaBoost: Key Idea 3

Performance-Based Model Weighting

▶ Unlike random forests where all
trees contribute equally,
AdaBoost assigns varying
importance to each model

▶ The algorithm calculates an
”amount of say” (αt) for each
classifier based on its accuracy

▶ Highly accurate classifiers
receive strong positive weights

▶ Random-level performers (error
rate = 0.5) receive zero weight

▶ Poor performers can contribute
negatively by having their
predictions reversed
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AdaBoost: Key Algorithm Components

1. How do we determine each model’s contribution?

▶ Model influence (αt) is based on weighted error
ϵt =

∑n
i=1 wt(i)1{yi ̸= ft(xi )}

▶ αt =
1
2 ln(

1−ϵt
ϵt

) where ϵt is the proportion of weighted
misclassifications

2. How do we adaptively weight training examples?

▶ Weights are updated after each iteration:
wt+1(i) ∝ wt(i) · eαt(1−21{yi=ft(xi )})

▶ For binary classification where yi ∈ {0, 1} and ft(xi ) ∈ {0, 1}
▶ This means weights increase for misclassified examples and decrease

for correctly classified ones

▶ Weights are normalized to form a probability distribution
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AdaBoost: Ensemble Prediction

How do we make predictions with the ensemble?

▶ Final prediction uses a weighted majority vote:

fboost(x) = 1

{
T∑
t=1

αt ft(x) ≥
1

2

T∑
t=1

αt

}

▶ Each weak learner’s vote (ft(x) ∈ {0, 1}) is weighted by its
performance (αt)

▶ Models with lower error rates have larger influence on the final
prediction

▶ The threshold is half the sum of all model weights

▶ When the weighted sum favors class 1, we predict 1; otherwise, we
predict 0
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AdaBoost Algorithm

Algorithm AdaBoost Algorithm

Require: Training data {(xi , yi )}ni=1, x ∈ X , y ∈ {0, 1}, number of
iterations T

Ensure: AdaBoost model
1: Initialize weights w1(i) =

1
n for i = 1 : n

2: for t = 1 to T do
3: Train classifier ft on weighted training data with weights wt

4: Calculate weighted error: ϵt =
∑n

i=1 wt(i)1{yi ̸= ft(xi )}
5: Calculate model weight: αt =

1
2 ln

(
1−ϵt
ϵt

)
6: Scale weights: ŵt+1(i) = wt(i) · eαt(1−21{yi=ft(xi )})

7: Normalize: wt+1(i) =
ŵt+1(i)∑
j ŵt+1(j)

8: end for
9: return Classification rule: fboost(x0) = 1{

∑T
t=1 αt ft(x0) ≥

1
2

∑T
t=1 αt}
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AdaBoost Example: First Decision Tree

Key calculations for Tree 1:

▶ Initial weights:

w1(i) = 0.1 for all samples

▶ Weighted Error:

ϵ1 = 0.300

▶ Model Contribution:

α1 =
1

2
ln

(
1− ϵ1
ϵ1

)
=

1

2
ln

(
0.7

0.3

)
= 0.424
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AdaBoost Example: First Decision Tree

Weight Update Process:

▶ For misclassified:

w2(i) ∝ w1(i) · e+α1

= 0.1 · e0.424

▶ For correctly
classified:

w2(i) ∝ w1(i) · e−α1

= 0.1 · e−0.424

▶ Weights are then
normalized.

Sample x1 x2 y w1 f1(x) w2

0 0.2 0.3 0 0.1 0 0.071
1 0.3 0.6 0 0.1 0 0.071
2 0.4 0.8 0 0.1 0 0.071
3 0.7 0.7 0 0.1 0 0.071
4 0.6 0.4 0 0.1 0 0.071
5 0.4 0.4 1 0.1 0 0.167
6 0.7 0.3 1 0.1 0 0.167
7 0.8 0.5 1 0.1 1 0.071
8 0.8 0.8 1 0.1 1 0.071
9 0.3 0.2 1 0.1 0 0.167
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AdaBoost Example: Second Decision Tree

Key calculations for Tree 2:

▶ Initial weights:

w2(i) from previous iteration

▶ Weighted Error:

ϵ2 = 0.214

▶ Model Contribution:

α2 =
1

2
ln

(
1− ϵ2
ϵ2

)
=

1

2
ln

(
0.786

0.214

)
= 0.650
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AdaBoost Example: Second Decision Tree

Weight Update Process:

▶ For misclassified:

w3(i) ∝ w2(i) · e+α2

= w2(i) · e0.650

▶ For correctly
classified:

w3(i) ∝ w2(i) · e−α2

= w2(i) · e−0.650

▶ Weights are then
normalized.

Sample x1 x2 y w2 f2(x) w3

0 0.2 0.3 0 0.071 1 0.166
1 0.3 0.6 0 0.071 0 0.045
2 0.4 0.8 0 0.071 0 0.045
3 0.7 0.7 0 0.071 0 0.045
4 0.6 0.4 0 0.071 1 0.166
5 0.4 0.4 1 0.166 1 0.106
6 0.7 0.3 1 0.166 1 0.106
7 0.8 0.5 1 0.071 1 0.045
8 0.8 0.8 1 0.071 0 0.166
9 0.3 0.2 1 0.166 1 0.106
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AdaBoost Example: Third Decision Tree

Key calculations for Tree 3:

▶ Initial weights:

w3(i) from previous iteration

▶ Weighted Error:

ϵ3 = 0.258

▶ Model Contribution:

α3 =
1

2
ln

(
1− ϵ3
ϵ3

)
=

1

2
ln

(
0.742

0.258

)
= 0.529
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AdaBoost Example: Third Decision Tree

Weight Update Process:

▶ For misclassified:

w4(i) ∝ w3(i) · e+α3

= w3(i) · e0.529

▶ For correctly
classified:

w4(i) ∝ w3(i) · e−α3

= w3(i) · e−0.529

▶ Weights are then
normalized.

Sample x1 x2 y w3 f3(x) w4

0 0.2 0.3 0 0.166 0 0.112
1 0.3 0.6 0 0.045 0 0.031
2 0.4 0.8 0 0.045 0 0.031
3 0.7 0.7 0 0.045 1 0.088
4 0.6 0.4 0 0.166 0 0.112
5 0.4 0.4 1 0.106 0 0.206
6 0.7 0.3 1 0.106 1 0.071
7 0.8 0.5 1 0.045 1 0.031
8 0.8 0.8 1 0.166 1 0.112
9 0.3 0.2 1 0.106 0 0.206
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AdaBoost Example: Fourth Decision Tree

Key calculations for Tree 4:

▶ Initial weights:

w4(i) from previous iteration

▶ Weighted Error:

ϵ4 = 0.262

▶ Model Contribution:

α4 =
1

2
ln

(
1− ϵ4
ϵ4

)
=

1

2
ln

(
0.738

0.262

)
= 0.519
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AdaBoost Example: Fourth Decision Tree

Weight Update Process:

▶ For misclassified:

w5(i) ∝ w4(i) · e+α4

= w4(i) · e0.519

▶ For correctly
classified:

w5(i) ∝ w4(i) · e−α4

= w4(i) · e−0.519

▶ Weights are then
normalized.

Sample x1 x2 y w4 f4(x) w5

0 0.2 0.3 0 0.112 0 0.076
1 0.3 0.6 0 0.031 1 0.058
2 0.4 0.8 0 0.031 1 0.058
3 0.7 0.7 0 0.088 1 0.169
4 0.6 0.4 0 0.112 1 0.214
5 0.4 0.4 1 0.206 1 0.139
6 0.7 0.3 1 0.071 1 0.048
7 0.8 0.5 1 0.031 1 0.021
8 0.8 0.8 1 0.112 1 0.076
9 0.3 0.2 1 0.206 1 0.139
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AdaBoost: Final Ensemble Predictions

Sample y f1 α1 f2 α2 f3 α3 f4 α4 fboost
0 0 0 0.424 1 0.650 0 0.529 0 0.519 0
1 0 0 0.424 0 0.650 0 0.529 1 0.519 0
2 0 0 0.424 0 0.650 0 0.529 1 0.519 0
3 0 0 0.424 0 0.650 1 0.529 1 0.519 0
4 0 0 0.424 1 0.650 0 0.529 1 0.519 1
5 1 0 0.424 1 0.650 0 0.529 1 0.519 1
6 1 0 0.424 1 0.650 1 0.529 1 0.519 1
7 1 1 0.424 1 0.650 1 0.529 1 0.519 1
8 1 1 0.424 0 0.650 1 0.529 1 0.519 1
9 1 0 0.424 1 0.650 0 0.529 1 0.519 1
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AdaBoost: Final Decision Boundary

The Power of Ensemble Learning

▶ The final decision boundary
combines all four weak
classifiers

▶ This demonstrates how
AdaBoost transforms simple
models into sophisticated
classifiers

▶ Accuracy improves from 70%
(individual trees) to 90%
(ensemble)
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Gradient Boosting (Optional Session Week 5)

Algorithm Gradient Boosting Algorithm

Require: Training data {(xi , yi )}ni=1, loss function L, number of
trees M, learning rate η

Ensure: Gradient Boosted model
1: Initialize model with a constant: F0(x) = argmin

ŷ

∑n
i=1 L(yi , ŷ)

2: for m = 1 to M do
3: Compute pseudo-residuals:

rim = −
[
∂L(yi ,F (xi ))

∂F (xi )

]
F (x)=Fm−1(x)

for i = 1 : n

4: Fit a new regression tree to the pseudo-residuals rim
5: Compute optimal value for each leaf region Rjm:

γjm = argmin
γ

∑
xi∈Rjm

L(yi ,Fm−1(xi ) + γ)

6: Update equation: Fm(x) = Fm−1(x) + η · γm
7: end for
8: return Final model FM(x)
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Click here to participate in the poll
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https://forms.gle/BUv6K3F8zokPhSaH9


Programming Session 4: Introducing
Supervised Learning Algorithms for
Time Series Forecasting

▶ Section 1: Preprocessing the
Dataset.

▶ Section 2: Tree based Models for
Time Series Forecasting.

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page
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https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/
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Supervised Learning - Review

Supervised Learning:

▶ Learn a function f : X → Y from labeled data.

▶ Feature space X : matrix of features, n observations × m
features.

▶ Target space Y : vector of n labels (or target values).
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Shallow Neural Network

▶ Feature vector:
xi = (xi1, . . . , xim) ∈ Rm

▶ Parameters:
θ = {(W(1),b(1)), (W(2),b(2))}
▶ W(1) ∈ Rm×L: weights

connecting input to hidden layer

▶ b(1) ∈ RL: biases for hidden layer

▶ W(2) ∈ RL×1: weights
connecting hidden to output

▶ b(2) ∈ R: bias for output layer

▶ Model: fθ : Rm → R mapping
features to predictions

▶ Output: ŷi (category for classification
or continuous value for regression)

...

...

...

...

xi

ŷi

(W(1),b(1)) (W(2),b(2))
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Forward Propagation

▶ For all ℓ ∈ {1, 2, . . . , L}:

hiℓ = σ1

(
m∑

k=1

W
(1)
kℓ · xik + b

(1)
ℓ

)

▶ Then the output:

ŷi = σ2

(
L∑

ℓ=1

W
(2)
ℓ · hiℓ + b(2)

)

▶ σ1, σ2 are activation functions.

▶ Parameters:
θ = {(W(1),b(1)), (W(2),b(2))}

xi1

...

xik

...

xim

hi1

...

hiℓ

...

hiL

ŷi
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Forward Propagation - Matrix Notation

▶ xi ∈ Rm is the input feature vector

▶ hi ∈ RL is the hidden layer vector

▶ The model output ŷi ∈ R is calculated
as follows:

hi = σ1(W
(1)Txi + b(1))

ŷi = σ2((W
(2))Thi + b(2))

xi1

...

xik

...

xim

hi1

...

hiℓ

...

hiL

ŷi

xi ∈ Rm hi ∈ RL

▶ The final output is:

ŷi = fθ(xi ) = σ2

(
(W(2))Tσ1

(
W(1)Txi + b(1)

)
+ b(2)

)
▶ Next step: Learning the parameters θ = {(W(1),b(1)), (W(2),b(2))}

from training data using a loss function
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Activation Functions

Sigmoid:

σ(z) =
1

1 + e−z
∈ [0, 1]

▶ Used as final activation for binary
classification

▶ Output interpreted as probability:
ŷi = P(Y = 1|xi )

Tanh:

tanh(z) =
ez − e−z

ez + e−z
∈ [−1, 1]

▶ Zero-centered, helps with convergence

▶ Often used in hidden layers
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ReLU Activation Function

ReLU (Rectified Linear Unit):

ReLU(z) = max(0, z)

▶ Faster to compute, computational efficiency

▶ No saturation for positive values, helps with gradient flow

▶ Problem: ”dying ReLU” (neurons can get stuck at 0)

▶ Most widely used in hidden layers

▶ Sparse activation: typically 50% of neurons inactive

▶ No vanishing gradient for positive inputs
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Leaky ReLU Activation Function

Leaky ReLU:

LeakyReLU(z) =

{
z if z > 0

αz if z ≤ 0

▶ Introduced in [4].

▶ Prevents ”dying ReLU” problem with small slope α

▶ Typical values for α range from 0.01 to 0.2

▶ Allows small gradient flow for negative inputs

▶ Maintains most of the computational efficiency of ReLU

▶ Not always superior to ReLU in practice
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ELU Activation Function

ELU (Exponential Linear Unit):

ELU(z) =

{
z if z > 0

α(ez − 1) if z ≤ 0

▶ Introduced in [1].

▶ Smooth curve for negative values, reducing noise

▶ Approaches −α as z becomes very negative

▶ Self-regularizing: can help with internal covariate shift

▶ More computationally expensive than ReLU

▶ Often produces faster convergence in training
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SELU Activation Function

SELU (Scaled ELU):

SELU(z) = λ

{
z if z > 0

α(ez − 1) if z ≤ 0

▶ Introduced in [3].

▶ Fixed parameters: α ≈ 1.67 and λ ≈ 1.05

▶ Scaling factor λ enables self-normalization

▶ Automatically preserves mean and variance of inputs

▶ Helps training deep networks without batch normalization

▶ Requires ”SELU initialization” (LeCun Normal)
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Introduction to Loss Functions

▶ Why do we need loss functions?

▶ Quantify how well our model fθ performs on data

▶ Provide a differentiable objective to optimize

▶ Guide the learning of parameters θ

▶ From predictions to learning:

▶ Forward propagation gives us: ŷi = fθ(xi )

▶ Loss function measures: L(ŷi , yi ) - the discrepancy between
predictions and true values

▶ Overall objective:

min
θ

1

n

n∑
i=1

L(fθ(xi ), yi )
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Binary Cross Entropy Loss Function - MLE

▶ Dataset: D = {(xi , yi )}ni=1 where yi ∈ {0, 1}
▶ Probabilistic view: Neural network outputs represent probabilities

▶ For binary classification:
∀i ∈ {1, . . . , n} ŷi = fθ(xi ) = pθ(Y = 1|xi )

▶ Log-likelihood for all data:

logL(θ) =
n∑

i=1

log pθ(Y = yi |xi )

=
n∑

i=1

[yi log ŷi + (1− yi ) log(1− ŷi )]

▶ The loss function is the normalized negative Log-Likelihood:

min
θ

−1

n
logL(θ) ⇐⇒ min

θ
−1

n

n∑
i=1

[yi log ŷi + (1− yi ) log(1− ŷi )]
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Categorical Cross Entropy Loss Function - MLE

▶ Dataset: D = {(xi , yi )}ni=1 where yi ∈ {1, 2, . . . ,K}
▶ Probabilistic view: Neural network outputs represent probability

distribution over K classes

▶ For multi-class classification:
∀i ∈ {1, . . . , n} ŷi = fθ(xi ) = (pθ(Y = 1|xi ), . . . , pθ(Y = K |xi ))

▶ One-hot encoding of target: yi = (yi1, yi2, . . . , yiK ) where
yik = 1[yi=k]

▶ Log-likelihood for all data:

logL(θ) =
n∑

i=1

log pθ(Y = yi |xi ) =
n∑

i=1

K∑
k=1

yik log ŷik

▶ The loss function is the normalized negative Log-Likelihood:

min
θ

−1

n
logL(θ) ⇐⇒ min

θ
−1

n

n∑
i=1

K∑
k=1

yik log ŷik
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Regression Loss Functions Overview

Loss Formula Key Properties

MSE 1
n

∑n
i=1(yi − ŷi )

2

▶ Differentiable everywhere

▶ Sensitive to outliers

MAE 1
n

∑n
i=1 |yi − ŷi |

▶ Less sensitive to outliers

▶ Non-differentiable at zero

MAPE 1
n

∑n
i=1

|yi−ŷi |
|yi |

▶ Scale-independent

Hachem MADMOUN ICBS May 15, 2025 50 / 64



Optional Programming Session: The
Custom Huber Loss function

▶ Click here to access the
programming session

Content:

▶ Tensors and operations in
TensorFlow.

▶ Computing Gradients with
Autodiff.

▶ Custom Loss Function: The Huber
Loss.
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Loss Function Guidelines - Classification

▶ For classification:

▶ Binary classification: Binary Cross-Entropy with sigmoid

LBCE = −1

n

n∑
i=1

[yi log ŷi + (1− yi ) log(1− ŷi )]

▶ Multi-class classification: Categorical Cross-Entropy with
softmax

LCCE = −1

n

n∑
i=1

K∑
k=1

yik log ŷik

▶ Multi-label classification: Binary Cross-Entropy per label

LML = −1

n

n∑
i=1

K∑
k=1

[yik log ŷik + (1− yik) log(1− ŷik)]
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Loss Function Guidelines - Regression

▶ For regression:
▶ Clean data, normal distribution: MSE

LMSE =
1

n

n∑
i=1

(yi − ŷi )
2

▶ Data with outliers: MAE

LMAE =
1

n

n∑
i=1

|yi − ŷi |

▶ Data with outliers (alternative): Huber Loss

Lδ =
1

n

n∑
i=1

{
1
2 (yi − ŷi )

2 if |yi − ŷi | ≤ δ

δ|yi − ŷi | − 1
2δ

2 otherwise

▶ Relative error important: MAPE

LMAPE =
1

n

n∑
i=1

|yi − ŷi |
|yi |

× 100%
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Gradient Descent Algorithm

Algorithm Gradient Descent Algorithm

Require: Training data {(xi , yi )}ni=1, loss function L, learning rate
α, iterations T

Ensure: Optimized parameters θ
1: Initialize parameters θ(0) randomly
2: for t = 1 to T do

θ(t) = θ(t−1) − α · ∇θL(θ(t−1))
3: if Convergence criteria met then
4: break
5: end if
6: end for
7: return Final parameters θ(T )
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Visualizing Gradient Descent

Key aspects of Gradient Descent:

▶ Intuition: Move downhill in
the direction of steepest
descent

▶ Learning rate α controls step
size:

▶ Too small: slow
convergence

▶ Too large: overshooting
or divergence

▶ For neural networks, loss
landscapes are typically
non-convex, so we often
converge to a local minimum

▶ In this figure, we reach the
global minimum since the
function is convex
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Variable Selection Network (VSN)

▶ We will explore the Variable Selection Network (VSN) in
Lecture 7 as part of the Temporal Fusion Transformer
Architecture.
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TFT Architecture: High-Level View
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Click here to participate in the poll
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Programming Session 4: Introducing
Supervised Learning Algorithms for
Time Series Forecasting

▶ Section 3: Neural Networks.

▶ Section 4: Performance Analysis.

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page
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Click here to take the quiz
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Thank you for your attention
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