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1 Introducing the Expectation Maximization al-
gorithm

1.1 Introducing the context

The Expectation-Maximization (EM) algorithm is an iterative method used for
obtaining maximum likelihood estimates of parameters within statistical models.
These models are characterized by their reliance on unobserved latent variables
or hidden variables. Latent variables, denoted as z, are not directly observed
but are inferred through the variables that are observed, denoted as x.

Within the context of the EM algorithm, we operate under the following frame-
work:

• Assumption: We consider (x, z) to be random variables, where x repre-
sents the observed data, and z represents the hidden or latent variables
(for example, unknown cluster centers in a clustering problem). The joint
density function of x and z, pθ(x, z), is parameterized by θ, indicating the
model’s parameters.

• Objective: The primary goal is to maximize the marginal likelihood of
the observed data x with respect to the parameters θ, expressed as:

max
θ
pθ(x) =

∑
z

pθ(x, z)

This objective highlights the challenge posed by the presence of latent variables:
maximizing the marginal likelihood is not straightforward due to the summation
over the latent variable z. The summation introduces complexities, making the
problem more challenging than optimizing a likelihood function without latent
variables.

Specifically, taking the logarithm of the marginal likelihood does not lead to a sim-
ple convex optimization problem. The EM algorithm provides a robust method
for addressing this challenge, facilitating the estimation of model parameters in
the presence of latent variables.

1.2 The EM algorithm

The Dataset is composed of the pairs (xi, zi)1≤i≤n where xi is the observed data
and zi is the hidden data.
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We make the assumption that the (xi, zi)1≤i≤n are i.i.d.

The aim is to maximize the log likelihood:

log pθ(x) =

n∑
i=1

log
∑
zi

pθ (xi, zi)

We will use the following properties :

Proposition 1.2.1. Jensen Inequality:

1. if f : R→ R is convex and if X is an integrable random variable :

EX(f(X)) ≥ f (EX(X))

2. if f : R → R is strictly convex, we have equality in the previous
inequality if and only if X = constant a.s.

The EM algorithm is an iterative method for finding maximum likelihood esti-
mates of parameters in statistical models, where the models depend on unobserved
latent variables.

Consider for instance n observations x1, . . . , xn and the latent variables associa-
teed with them z1, . . . , zn.

We assume the pairs (xi, zi) to be independent and identically distributed.

For (x, z) = (x1, z1, . . . , xn, zn), the objective is to maximize:

log(p(x; θ)) =

n∑
i=1

log

(∑
zi

p(xi, zi; θ)

)

For each i ∈ {1, . . . , n}, we introduce a function zi 7→ q(zi) such that q(zi) ≥ 0
and

∑
zi
q(zi) = 1 in the expression of the likelihood.

By conditioning on a latent variable zi and using the Jensen inequality, we get a
lower bound L(q, θ) that depends on both q and θ.
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log(p(x; θ)) =

n∑
i=1

log

(∑
zi

p(xi, zi; θ)

)

=

n∑
i=1

log

(∑
zi

q(zi)
p(xi, zi; θ)

q(zi)

)

≥
n∑
i=1

∑
zi

q(zi) log

(
p(xi, zi; θ)

q(zi)

)

=

n∑
i=1

Eq(zi)
[
log

(
pθ(xi, zi)

q(zi)

)]
︸ ︷︷ ︸

L(q(zi),θ)

The EM algorithm can then be summarized as depicted in 1.

Algorithm 1 EM Algorithm

Require: Data set X = {x1, . . . , xn}
Ensure: Optimal θ

1: Initialization: Choose initial parameters θ(0).
2: Set iteration counter i = 0.
3: while not converged do
4: E-step: Update q to maximize the lower bound with respect to q.

qt+1 ∈ argmax
q

(L(q, θt))

5: M-step: Update θ to maximize the lower bound with respect to θ.

θt+1 ∈ argmax
θ

(L(qt+1, θ))

6: Check for convergence criterion (e.g., change in θ below a threshold).
7: i← i+ 1
8: end while
9: return Optimized parameters θ∗.

Exercise:

Show that the gap beween the marginal log-likelihood and the lower bound
n∑
i=1

L(q(zi), θ) is reduced to 0 when q(zi) = pθ(zi | xi) ∀i ∈ {1, . . . , n}.
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pθ(zi | xi) is called the posterior distribution

Solution: Let d = log(pθ(x))−
n∑
i=1

L(q(zi), θ).

We have:

d = log(pθ(x))−
n∑
i=1

L(q(zi), θ)

=

n∑
i=1

(log(pθ(xi))− L(q(zi), θ))

=

n∑
i=1

(∑
zi

q(zi) log(pθ(xi))−
∑
zi

q(zi) log

(
pθ(xi, zi)

q(zi)

))

=

n∑
i=1

∑
zi

q(zi)

(
log(pθ(xi))− log

(
pθ(xi, zi)

q(zi)

))

=

n∑
i=1

∑
zi

q(zi) log

(
q(zi)

pθ(zi|xi)

)

=

n∑
i=1

DKL (q(zi) ∥ pθ(zi|xi))

Therefore,

d = 0 ⇐⇒
n∑
i=1

DKL (q(zi) ∥ pθ(zi|xi))︸ ︷︷ ︸
≥0

⇐⇒ ∀i ∈ {1, . . . , n} DKL (q(zi) ∥ pθ(zi|xi))
⇐⇒ ∀i ∈ {1, . . . , n} q(zi) = pθ(zi|xi)

Therefore, maximizing the lower bound log (pθ(x)) with respect to q consists in
taking the posterior distributions ∀i ∈ {1, . . . , n} q(zi) = pθ(zi|xi).

Let’s recall the expression of the lower bound:
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L(q, θ) =
n∑
i=1

(∑
zi

q(zi) log pθ(xi, zi)−
∑
zi

q(zi) log q(zi)

)

Since
∑
zi
q(zi) log q(zi) doesn’t depend on θ, maximizing the lower bound with

respect to θ is equivalent to maximizing w.r.t θ the expected value of the complete
log likelihood function log (pθt(x, z)).

The final recipe is given in algorithm 5. It consists in the following steps:

1. Compute the probability of Z given X : pθt(z | x) (Corresponding to
qt+1 = argmaxq L (q, θt) )

2. Write the complete loglikelihood lc = log (pθt(x, z)).

3. E-Step: Calculate the expected value of the complete log likelihood
function, with respect to the conditional distribution of Z given X under
the current estimate of the parameter θt : EZ|X (lc).

4. E-Step: Find θt+1 by maximizing L (qt+1, θ) with respect to θ.

Algorithm 2 EM algorithm
Require: Observations x1, . . . , xn
Ensure: Optimal θ

1: Initialize θ(0)
2: while not converged do
3: E-step: q(z) = p(z|x; θ(i−1))
4: M-step: θ(i) = argmaxθ Eq[log p(x, z; θ)]
5: i← i+ 1
6: end while

Remarks:

• It is an ascent algorithm, indeed it goes up in term of likelihood (compare
to before where we were descending along the distortion).

• The sequence of log-likelihoods converges.

• It does not converge to a global maximum but rather to a local maximum
because we are dealing here with a non-convex problem. An illustration is
given in Figure 1
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Figure 1: An illustration of the EM algorithm that converges to a local minimum.

• As it was already the case for K-means, we reiterate the result in order to
be more confident. Then we keep the one with the highest likelihood.

• Because EM gives a local maximum, it is clever to choose a θ0 relatively
close to the final solution. For Gaussian mixtures, it is quite usual to
initiate EM by a K-means.

1.3 Estimating the parameters of a Gaussian Mixture
Model using the EM algorithm

Gaussian Mixture Models (GMMs) are a probabilistic model for representing
normally distributed subpopulations within an overall population. Unlike single
Gaussian models, which assume that all observations are drawn from a single
distribution, GMMs consider a mixture of several Gaussian distributions, each
with its own mean and variance, thus providing a more flexible approach to
modeling data distributions. This flexibility makes GMMs particularly useful for
modeling complex data sets with hidden or latent variables—where observations
may originate from one of several unknown subpopulations.

Let’s present a simple example to illustrate what we just said. The probability
density represented on Figure 2 is akin to an average of two Gaussians. Thus,
it is natural to use a mixture model and to introduce an hidden variable z,
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following a Bernoulli distribution defining which Gaussian the point is sampled
from.

Figure 2: Average of two probability distributions of two Gaussian for which it
is natural to introduce a mixture model

Thus we have : z ∈ {1, 2} and x | z = i ∼ N (µi,Σi). The density p(x) is a
convex combination of normal density:

p(x) = p(x, z = 1) + p(x, z = 2) = p(x | z = 1)p(z = 1) + p(x | z = 2)p(z = 2)

It is a mixture model. It represents a simple way to model complicated phenom-
ena.

Exercise:

Suppose we have observations n observations x1, . . . xn in Rp.

We make the assumption of the existence of latent variables z1, . . . , zn from
a multinomial distribution with K possible outcomes.

i.e:

∀i ∈ {1, . . . , n} xi ∈ Rp, zi ∼ M (1, π1, . . . , πK) and (xi | zi = j) ∼
N (µj ,Σj).

Here we have θ = (π, µ,Σ).
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Use the EM algorithm to estimate θ.

Solution:

1. Calculation of the posterior distributions pθ(zi | xi):
We write pθ (xi) :

pθ (xi) =
∑
zi

pθ (xi, zi) =
∑
zi

pθ (xi | zi) pθ (zi)

=
K∑
j=1

pθ (xi | zi = j) pθ (zi = j)

Then we use the Bayes formula to estimate pθ(z | x) :

pθ (zi = j | xi) =
pθ (xi | zi = j) pθ (zi = j)

pθ (xi)

=
πjN (xi | µj ,Σj)∑
j′ πj′N

(
xi | µ′

j ,Σ
′
j

)
= τ ji (θ).

We recall thatN (xi | µ,Σ) = 1

(2π)
p
2 |Σ|

1
2
exp

(
− 1

2 (x− µ)
TΣ−1(x− µ)

)
.

Suppose that we are at the t-th iteration of the algorithm.

2. Complete likelihood

Let’s write the complete likelihood of the problem.
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lc,t = log pθt(x, z) =

n∑
i=1

log pθt (xi, zi)

=

n∑
i=1

log (pθt (zi) pθt (xi | zi))

=

n∑
i=1

log (pθt (zi)) + log (pθt (xi | zi))

=

n∑
i=1

K∑
j=1

zji log (πj,t)

+

n∑
i=1

K∑
j=1

zji log (N (xi | µj,t,Σj,t))

where zji ∈ {0, 1} with zji = 1 if zi = j and 0 otherwise.

3. E-Step In the E-step, we compute the expectation of the complete
log-likelihood with respect to the conditional distribution of the latent
variables Z given the observed data X. This involves replacing the
indicator variables zji with their expected values:

EZ|X

(
zji

)
= pθt(z = j|xi) = τ ji (θt),

where τ ji represents the posterior probability that observation xi
belongs to component j, given the current parameter estimates. By
substituting zji with τ ji , we obtain the expected complete log-likelihood:

EZ|X(lc,t) =

n∑
i=1

K∑
j=1

τ ji log(πj,t) +

n∑
i=1

K∑
j=1

τ ji log (N (xi|µj,t,Σj,t)) .

4. M-Step

For the M-step, we this need to maximize:

n∑
i=1

K∑
j=1

τ ji log (πj,t) +

n∑
i=1

K∑
j=1

τ ji

[
log

(
1

(2π)
p
2

)
+ log

(
1

|Σj,t|
1
2

)

−1

2
(xi − µj,t)T Σ−1

j,t (xi − µj,t)
]
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We want to maximize the previous equation with respect to θt =
(πt, µt,Σt)

As the sum is separated into two terms independent along the variables
we can first maximize with respect to πt :

max
π

K∑
j=1

n∑
i=1

τ ji log πj ⇒ πj,t+1 =

n∑
i=1

τ ji∑n
i=1

K∑
j′=1

τ j
′

i

=
1

n

n∑
i=1

τ ji

We can now maximize with respect to µt and Σt. By computing the
gradient along the µj,t and along the Σj,t, we obtain :

µj,t+1 =

∑
i τ
j
i xi∑
i τ
j
i

Σj,t+1 =

∑
i τ
j
i (xi − µj,t+1) (xi − µj,t+1)

T∑
i τ
j
i

The M-step in the EM algorithm corresponds to the estimation of
means step in K-means. Note that the value of τ ji in the expressions
above are taken for the parameter values of the previous iterate, i.e.,
τ ji = τ ji (θt).

Possible forms for Σj

• isotropic: Σj = σ2
j Id, 1 parameter, the cluster is a sphere.

• diagonal: Σj is a diagonal matrix, p parameters, the cluster is
an ellipse oriented along the axis.

• general: Σj ,
p(p+1)

2 parameters, the cluster is an ellipse.

2 Hidden Markov Models

2.1 Introduction

We denote (X̃1, . . . , X̃T ) a sequence of vectors in Rd.

The objective of this section is to model the dynamics of the sequence (X̃1, . . . , X̃T )
using a Hidden Markov Model (HMM) with m possible hidden states.
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Section 2.2 gives a brief description of the parameterization of the HMM graphical
model. Section 2.3 deals with the inference problem and introduces the filtering
and smoothing probabilities. In section 2.5, we present the learning process using
the Expectation Maximization algorithm. Finally, in section 2.6, we predict the
distribution of the next hidden states given a sequence of observations.

2.2 The parameterization of the graphical model

The hidden state at time t is denoted by Ht and the observation at time t by
X̃t. Let us assume there are M possible hidden states and that the observations
are continuous in Rd. Let us also suppose we have T continuous observations
(X̃t)1≤T ∈ RT×d

Figure 3 shows the difference between the graphical representation associated
with the vanilla Gaussian mixture model introduced in section 1.3 and the
graphical model associated with the HMM.

Figure 3: Comparing the graphical representations of the mixture model and
the HMM

A Gaussian Mixture model would be parameterized by a vector π = (π1, . . . , πM ) ∈

RM such that
M∑
m=1

πm = 1 and (µm,Σm) ∈ Rd ×Rd×d for each m ∈ {1, . . . ,M},

such that:
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Hi ∼M(1, π1, . . . , πM )

∀t ∈ {1, . . . , T} X̃t|Ht = m ∼ Nd(µm,Σm)

In the HMM graphical model, each vertical slice represents a time step. Applying
d-separation to the the graphical model, we can retrieve the well known result
that the future is independent of the past given the present.1.

To parameterize the Hidden Markov Model, we need to assign local conditional
probabilities to each of the nodes. We represent the state at time t as a
multinomial random variable Ht with M hidden states.

The first state node has no parents, thus we endow this node with an unconditional
distribution π (called the intital state distribution), such that:

∀i ∈ J1,MK πi = p(H0 = i)

Each successive state node has the previous state node in the chain as its parent,
thus we need a M ×M matrix to specify its local conditional probability.

We define a state transition matrix Q, where the (i, j)th entry Qij of Q
is defined to be the transition probability p(Ht+1 = j|Ht = i). We assume a
homogeneous HMM, so the transition probability is independent of t.

Each of the output node has a single state node as a parent, thus we require a
probability distribution p(X̃t|ht) called the emission distribution. We assume
the emission distribution to be Gaussian and independent of t.

Therefore, the parameterization can be summarized as follows:

∀m ∈ {1, . . . ,M} πm = p(H1 = m)

∀h, h′ ∈ {1, . . . ,M} Qh,h′ = p(Ht+1 = h′|Ht = h)

∀t ∈ {1, . . . , T} ∀h ∈ {1, . . . ,M} X̃t|Ht = h ∼ Nd(µh,Σh)

We denote µ = (µm)m∈J1,MK ∈ RM×d and Σ = (Σm)m∈J1,MK ∈ RM×d×d the
parameters of the emission distributions.

The parameters associated with an HMM are: θ = (π,Q, µ,Σ).
1By present, we mean conditioning on the state note Ht, not the output node X̃t
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2.3 The Inference problem

2.3.1 The joint probability

For a particular sequence (h, x̃) = (h1, . . . , hT , x̃1, . . . , x̃t), we obtain the follow-
ing joint probability:

pθ(h, x̃) = p(h1)

T−1∏
t=1

p(ht+1|ht)
T∏
t=1

p(x̃t|ht) (1)

To introduce Q and π into this equation and adopt a notation in which state
variables can be used as indices, we use the one hot encoding notation: The one
hot vector h̃t ∈ {0, 1}M is defined as follows:

∀t ∈ J1, T K ∀i ∈ J1,MK h̃it = 1 ⇐⇒ ht = m (2)

We can then define Qht,ht+1
and πh0

as follows:

Qht,ht+1
:=

M∏
i,j=1

[Qij ]
h̃i
th̃

j
t+1 and πh0

:=

M∏
i=1

[πi]
h̃i
0 (3)

Similarly, we define µht
and Σht

as follows:

µht
:=

(
M∏
i=1

[diag(µi)]h̃
i
t

)
1d and Σht

:=

M∏
i=1

[Σi]
h̃i
t

Plugging the definitions into the joint probability, we obtain the parameterized
distribution:

pθ(h, x̃) = πh1

T−1∏
t=1

Qht,ht+1

T∏
t=1

N (x̃t;µht
,Σht

) (4)

Hence,

pθ(x̃) =
∑
h1

∑
h2

· · ·
∑
hT

πh1

T−1∏
t=1

Qht,ht+1

T∏
t=1

N (x̃t;µht ,Σht) (5)
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2.3.2 Smoothing - Filtering probabilities

We introduce the following probabilities:

• Filtering probabilities: ξ ∈ RT×M

ξ(t, h) := p(Ht = h|X̃1, . . . , X̃t) ∀(t, h) ∈ J1, T K × J1,MK

• Smoothing probabilities: ψ ∈ RT×M and ϕ ∈ RT−1×M×M

ψ(t, h) := p(Ht = h|X̃1, . . . , X̃T ) ∀(t, h) ∈ J1, T K× J1,MK

ϕ(t, h, h′) := p(Ht = h,Ht+1 = h′|X̃1, . . . , X̃T )

∀(t, h, h′) ∈ J1, T − 1K× J1,MK× J1,MK

2.4 The Forward Backward Algorithm for calculating fil-
tering and smoothing probabilities

2.4.1 Filtering probabilities: Forward Algorithm

In order to compute the filtering probabilities ξ ∈ RT×M , we will take advantage
of the conditional independencies in the graphical model, breaking the problem
into pieces as follows:

1. Expressing the Filtering probabilities in term of alpha variables:

First, let’s introduce α ∈ RT×M :

∀(t, h) ∈ J1, T K× J1,MK α(t, h) := p(X̃1, . . . , X̃t, Ht = h) (6)

The filtering probabilities can be expressed using the α variables, which
are easy to compute (recursively).

Exercise:
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Show that:
∀t ∈ J1, T K ξt =

αt
1TMαt

Solution:

Indeed, for all (t, h) ∈ J1, T K× J1,MK:

ξ(t, h) := p(Ht = h|X̃1, . . . , X̃t)

=
p(Ht = h, X̃1, . . . , X̃t)

p(X̃1, . . . , X̃t)

=
p(Ht = h, X̃1, . . . , X̃t)

M∑
h′=1

p(Ht = h′, X̃1, . . . , X̃t)

=
α(t, h)

M∑
h′=1

α(t, h′)

So,

∀(t, h) ∈ J1, T K× J1,MK ξ(t, h) =
α(t, h)

M∑
h′=1

α(t, h′)

(7)

Notation:

∀t ∈ J1, T K αt = (α(t, 1), . . . , α(t,M))T and ξt = (ξ(t, 1), . . . , ξ(t,M))T

The equation 7 can then be written as follows:

∀t ∈ J1, T K ξt =
αt

1TMαt
(8)

2. Calculating the alpha variables recursively:

Let’s introduce the emission tensor Γ ∈ J1, T K× J1,MK× J1,MK such that:
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∀t ∈ J1, T K : Γ(t) =

p(X̃t|Ht = 1)
. . .

p(X̃t|Ht =M)



Exercise:

Using the marginalization on the previous hidden state and exploiting
the graphical model independencies, show that:

α1 = Γ(1)π, ∀t ≥ 2 αt = Γ(t)QTαt−1

Solution:

For all (t, h) ∈ J1, T K× J1,MK:

α(t, h) = p(X̃1, . . . , X̃t, Ht = h)

=

M∑
h′=1

p(X̃1, . . . , X̃t, Ht = h,Ht−1 = h′)

=

M∑
h′=1

p(X̃t|X̃1, . . . , X̃t−1, Ht = h,Ht−1 = h′)p(X̃1, . . . , X̃t−1, Ht = h,Ht−1 = h′)

=

M∑
h′=1

p(X̃t|Ht = h)p(Ht = h|X̃1, . . . , X̃t−1, Ht−1 = h′)p(X̃1, . . . , X̃t−1, Ht−1 = h′)

=

M∑
h′=1

p(X̃t|Ht = h) p(Ht = h|Ht−1 = h′)︸ ︷︷ ︸
Qh′h

p(X̃1, . . . , X̃t−1, Ht−1 = h′)︸ ︷︷ ︸
α(t−1,h′)

So,

∀(t, h) ∈ J1, T K× J1,MK α(t, h) =

M∑
h′=1

p(X̃t|Ht = h)Qh′hα(t− 1, h′)

(9)

The equation 9 can be written as follows:
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α1 = Γ(1)π, ∀t ≥ 2 αt = Γ(t)QTαt−1 (10)

3. Handling numerical issues:

From the above sections, we conclude that, given an observed sequence,
the filtering probabilities can be obtained by:

• Calculating the alpha variables recursively, as shown in the equations
10.

• Deducing the filtering probabilities, as shown in equation 8.

However, attention must be paid to numerical issues during the implemen-
tation. Since the recursion in 10 implies several multiplications of small
numbers, the numbers underflow quite rapidly.

To avoid underflow, it suffices to normalize. Indeed, normalizing the alpha
variables (6), which means dividing p(X̃1, . . . , X̃t, Ht = h) by p(X̃1, . . . , X̃t)
yields conditionals p(Ht = h|X̃1, . . . , X̃t). These conditionals, which repre-
sent the filtered estimates of the states, scaled in a stable manner. In sum,
one should compute directly the filtering probabilities instead of computing
recursively the alpha variables and then deducing the filtering estimates.

Therefore, let’s introduce (ξ̃t)1≤t≤T as follows:

∀t ∈ J1, T K ξ̃t := Γ(t)QT ξt−1 (11)

And (ct)1≤t≤T defined as follows:

∀t ∈ J1, T K ct := 1T ξ̃t (12)

Exercise:

(a) Show that:

∀t ∈ J1, T K ct =
1TMαt

1TMαt−1

(b) Deduce that:

∀t ∈ J1, T K ξt =
ξ̃t
ct
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(c) Deduce an algorithm to calculate the filtering probabilities recur-
sively

We have then:

ct := 1T ξ̃t

= 1TMΓ(t)QT ξt−1

= 1TM

αt︷ ︸︸ ︷
Γ(t)QTαt−1

1TMαt−1
(from 8 and 10)

=
1TMαt

1TMαt−1

So,

∀t ∈ J1, T K ct =
1TMαt

1TMαt−1
(13)

And we have:

ξt =
1

1TMαt
αt (from 8)

=
1

1TMαt
Γ(t)QTαt−1 (from 10)

= Γ(t)QT
αt−1

1TMαt−1︸ ︷︷ ︸
ξt−1

1TMαt−1

1TMαt

= Γ(t)QT ξt−1︸ ︷︷ ︸
:=ξ̃t

1TMαt−1

1TMαt

=
ξ̃t
ct

(from 13)

So,

∀t ∈ J1, T K ξt =
ξ̃t
ct

(14)

Finally, the recursion consists in the following steps:

• Initialization of c1 and ξ1
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• We move from t to t+ 1 as follows:

ξt
eq11−−−→ ξ̃t+1

eq12−−−→ ct+1

(ct+1 and ξ̃t+1)
eq14−−−→ ξt+1

4. The Forward Algorithm:

From the previous section, we conclude the following algorithm, called
Forward Algorithm:

Algorithm 3 Forward Algorithm

Require: Observations X̃1 . . . X̃T

Ensure: (ξt)1≤t≤T (The filtering probabilties)

1: c1 ← 1TΓ(1)π
2: ξ1 ← Γ(1)π/c1
3: for t← 2, . . . , T do
4: ξ̃t ← Γ(t)QT ξt−1

5: ct ← 1T ξ̃t
6: ξt ← ξ̃t/ct
7: end for

2.4.2 Smoothing probabilities: Forward Backward Algorithm

1. Expressing the smoothing probabilities in term of alpha and beta
variables:

First, let’s introduce β ∈ RT×M :

∀(t, h) ∈ J1, T K× J1,MK β(t, h) := p(X̃t+1, . . . , X̃T |Ht = h) (15)

We introduce the following notations:

∀t ∈ J1, T K βt = (β(t, 1), . . . , β(t,M))T ϕt = [ϕ(t, h, h′)]h,h′ ψt = [ψ(t, h)]h

The smoothing probabilities can be expressed using the alpha and beta
variables, which we can calculate (recursively).

Exercise:

Show that:
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∀t ∈ J1, T K ψt =
αt ◦ βt
1TMαT

And

∀t ∈ J1, T K ϕt =
diag(αt)QΓ(t+ 1)diag(βt+1)

1TMαT

Solution:

Indeed, for all (t, h) ∈ J1, T K× J1,MK:

ψ(t, h) := p(Ht = h|X̃1, . . . , X̃T )

=
p(Ht = h, X̃1, . . . , X̃T )

p(X̃1, . . . , X̃T )

=
p(Ht = h, X̃1, . . . , X̃t)p(X̃t+1, . . . , X̃T |Ht = h, X̃1, . . . , X̃t)∑M

h′=1 p(Ht = h′, X̃1, . . . , X̃T )

=
p(Ht = h, X̃1, . . . , X̃t)p(X̃t+1, . . . , X̃T |Ht = h)∑M

h′=1 p(Ht = h′, X̃1, . . . , X̃T )

=
α(t, h)β(t, h)
M∑
h′=1

α(T, h′)

So,

∀(t, h) ∈ J1, T K× J1,MK ψ(t, h) =
α(t, h)β(t, h)
M∑
h′=1

α(T, h′)

(16)

i.e,

∀t ∈ J1, T K ψt =
αt ◦ βt
1TMαT

We also have for all (t, h, h′) ∈ J1, T K× J1,MK× J1,MK:

22



ϕ(t, h, h′) := p(Ht = h,Ht+1 = h′|X̃1, . . . , X̃T )

=
p(X̃1, . . . , X̃T |Ht = h,Ht+1 = h′)p(Ht = h,Ht+1 = h′)

p(X̃1, . . . , X̃T )

=

p(X̃1, . . . , X̃t|X̃t+1, . . . , X̃T , Ht = h,Ht+1 = h′)p(X̃t+1, . . . , X̃T |Ht = h,Ht+1 = h′)

p(Ht = h,Ht+1 = h′)

p(X̃1, . . . , X̃T )

=

︷ ︸︸ ︷
p(X̃1, . . . , X̃t|Ht = h) p(X̃t+1, . . . , X̃T |Ht+1 = h′)p(Ht+1 = h′|Ht = h)

︷ ︸︸ ︷
p(Ht = h)

p(X̃1, . . . , X̃T )

=
α(t, h)p(X̃t+1, . . . , X̃T |Ht+1 = h′)p(Ht+1 = h′|Ht = h)

p(X̃1, . . . , X̃T )

=
α(t, h)p(X̃t+1|X̃t+2, . . . , X̃T , Ht+1 = h′)p(X̃t+2, . . . , X̃T |Ht+1 = h′)p(Ht+1 = h′|Ht = h)

p(X̃1, . . . , X̃T )

=
α(t, h)p(X̃t+1|Ht+1 = h′)

:=β(t+1,h′)︷ ︸︸ ︷
p(X̃t+2, . . . , X̃T |Ht+1 = h′)

Qhh′︷ ︸︸ ︷
p(Ht+1 = h′|Ht = h)

M∑
h′′=1

p(X̃1, . . . , X̃T , HT = h′′)

=
α(t, h)p(X̃t+1|Ht+1 = h′)β(t+ 1, h′)Qhh′

M∑
h′′=1

α(T, h′′)

So,

∀(t, h, h′) ∈ J1, T K×J1,MK×J1,MK ϕ(t, h, h′) =
α(t, h)p(X̃t+1|Ht+1 = h′)β(t+ 1, h′)Qhh′

M∑
h′′=1

α(T, h′′)

(17)

So, The equation 17 can then be written as:

∀t ∈ J1, T K ϕt =
diag(αt)QΓ(t+ 1)diag(βt+1)

1TMαT
(18)

2. Calculating the beta variables recursively:

23



Exercise:

Using the marginalization on the next hidden state and exploiting the
graphical model independencies, show that

βT = 1M , ∀0 ≤ t ≤ T − 1 βt = QΓ(t+ 1)βt+1

Solution:

For all (t, h) ∈ J1, T K× J1,MK:

β(t, h) = p(X̃t+1, . . . , X̃T |Ht = h)

=

M∑
h′=1

p(X̃t+1, . . . , X̃T , Ht+1 = h′|Ht = h)

=

M∑
h′=1

p(X̃t+1, . . . , X̃T |Ht+1 = h′, Ht = h)p(Ht+1 = h′|Ht = h)

=

M∑
h′=1

p(X̃t+1, . . . , X̃T |Ht+1 = h′)p(Ht+1 = h′|Ht = h)

=

M∑
h′=1

p(X̃t+1|X̃t+2, . . . , X̃T , Ht+1 = h′)p(X̃t+2, . . . , X̃T |Ht+1 = h′)p(Ht+1 = h′|Ht = h)

=

M∑
h′=1

p(X̃t+1|Ht+1 = h′)p(X̃t+2, . . . , X̃T |Ht+1 = h′)p(Ht+1 = h′|Ht = h)

=

M∑
h′=1

p(X̃t+1|Ht+1 = h′)β(t+ 1, h′)Qhh′

So,

∀(t, h) ∈ J1, T K×J1,MK β(t, h) =

M∑
h′=1

p(X̃t+1|Ht+1 = h′)β(t+1, h′)Qhh′

(19)

The equation 19 can be written as follows:
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βT = 1M , ∀0 ≤ t ≤ T − 1 βt = QΓ(t+ 1)βt+1 (20)

2.4.3 Wrap up: Calculating the filtering and the smoothing proba-
bilities using the Forward Backward Algorithm

In order to compute the filtering and the smoothing probabilities and the
likelihood efficiently, we use the Forward Backward algorithm 4.

Algorithm 4 Forward Backward Algorithm

Require: Observations X̃1 . . . X̃T

Ensure: (ξt)1≤t≤T and (ψt)1≤t≤T (The filtering and smoothing probabilties)

1: c1 ← 1TΓ(1)π
2: ξ1 ← Γ(1)π/c1
3: for t← 2, . . . , T do
4: ξ̃t ← Γ(t)QT ξt−1

5: ct ← 1T ξ̃t
6: ξt ← ξ̃t/ct
7: end for
8: β̃T ← 1/cT
9: for t← 1, . . . , T − 1 do

10: β̃T−t ← QΓ(T − t+ 1)β̃T−t+1

11: ψT−t ← diag(ξT−t)QΓ(T − t+ 1)diag(β̃T−t+1)
12: ϕT−t ← ψT−t1M
13: end for

2.5 Learning the parameters of the HMM using the Ex-
pectation Maximization (EM) Algorithm

In order to learn the parameters of the HMM, we use the Expectation Maxi-
mization algorithm.

1. Introducing the EM algorithm

The EM algorithm is an iterative method for finding maximum likelihood
estimates of parameters in statistical models, where the models depend on
unobserved latent variables.

Consider for instance N observations a1, . . . , aN and the latent variables
associateed with them z1, . . . , zN .
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We assume the pairs (ai, zi) to be independent and identically distributed.

For (a, z) = (a1, z1, . . . , aN , zN ), the objective is to maximize:

log(p(a; θ)) =

N∑
i=1

log

(∑
zi

p(ai, zi; θ)

)

By conditioning on a latent variable z and using the Jensen inequality, we
get:

log(p(a; θ)) = log

(∑
z

p(a, z; θ)

)

= log

(∑
z

q(z)
p(a, z; θ)

q(z)

)

≥
∑
z

q(z) log

(
p(a, z; θ)

q(z)

)
= Eq[log(p(a, z; θ))] + f(q)︸ ︷︷ ︸

L(q,θ)

With equality iff q(z) = pθ(z|a)
The EM algorithm can then be summarized as depicted in 5

Algorithm 5 EM algorithm
Require: Observations a1 . . . aN
Ensure: Optimal θ

1: Initialize θ
2: ξ1 ← Γ(1)π/c1
3: while (Not converged) do
4: E-step: q(z) = p(z|a; θ(i−1))
5: M-step: θ(i) = argmaxθ Eq[log(p(a, z; θ)]
6: end while

2. Learning the parameters of the HMM using the EM algorithm

(a) The E-step
At the iteration i, the complete loglikelihood log(pθi(h, x̃)) is expressed
as follows:
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log(pθi(h, x̃)) = log

(
π
(i)
h1

T−1∏
t=1

Q
(i)
ht,ht+1

T∏
t=1

N (x̃t;µ
(i)
ht
,Σ

(i)
ht
)

)
(21)

= log(π
(i)
h1
) +

T−1∑
t=1

log(Q
(i)
ht,ht+1

) +

T−1∑
t=1

log(N (x̃t;µ
(i)
ht
,Σ

(i)
ht
))

(22)

The E-step consists in computing : EH|x̃[log(pθi(h, x̃))].
We have:

EH|x̃[log(π
(i)
h1
)] =

M∑
h=1

log(π
(i)
h )p(H1 = h|x̃) (23)

EH|x̃[log(Q
(i)
ht,ht+1

)] =

M∑
h=1

M∑
h′=1

log(Q
(i)
hh′)p(Ht = h,Ht+1 = h′|x̃)

(24)

EH|x̃[log(N (X̃t;µ
(i)
ht
,Σ

(i)
ht
))] =

M∑
h=1

log(N (X̃t;µ
(i)
h ,Σ

(i)
h ))p(ht = h|x̃)

(25)

By summing the three parts, we obtain the following expression:

EH|x̃[log(pθi(h, x̃))] =
M∑
h=1

log(π
(i)
h )p(H1 = h|x̃) +

T−1∑
t=1

M∑
h=1

M∑
h′=1

log(Q
(i)
hh′)p(Ht = h,Ht+1 = h′|x̃)

+

T−1∑
t=1

M∑
h=1

log(N (X̃t;µ
(i)
h ,Σ

(i)
h ))p(Ht = h|x̃)

(26)

Introducing the smoothing probabilities, we obtain:

EH|x̃[log(pθi(h, x̃))] =
M∑
h=1

log(π
(i)
h )ψ(1, h) +

T−1∑
t=1

M∑
h=1

M∑
h′=1

log(Q
(i)
hh′)ϕ(t, h, h

′)

+

T−1∑
t=1

M∑
h=1

log(N (X̃t;µ
(i)
h ,Σ

(i)
h ))ψ(t, h)

(27)
(b) The M-step

The objective is to maximize EH|x̃[log(pθ(h, x̃))] with respect to θ:

θi+1 = argmax
θ

EH|x̃[log(pθ(h, x̃))] (28)
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Exercise:
Show that we obtain the following update equations, expressed
with the smoothing probabilities.
∀(h, h′) ∈ J1,MK× J1,MK

π
(i+1)
h = ψ(1, h) (29)

Q
(i+1)
h,h′ =

T∑
t=1

ϕ(t, h, h′)

T∑
t=1

ψ(t, h)

(30)

µ
(i+1)
h =

T∑
t=1

ψ(t, h)X̃t

T∑
t=1

ψ(t, h)

(31)

Σ
(i+1)
h =

T∑
t=1

ψ(t, h)(X̃t − µ(i)
h )(X̃t − µ(i)

h )T

T∑
t=1

ψ(t, h)

(32)

Solution: See Appendix A

2.6 Predicting the distribution of the hidden state over
the next period of time

Once the model is trained using the EM algorithm, we would like to compute
the probability of being in each hidden state over the next period of time, as
shown in figure 4.
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Figure 4: Predicting the turbulence state over the next period of time

The prediction over the next period can be calculated as follows:

∀h ∈ J1,MK p(HT+1 = h|X̃1 = x̃1, . . . , X̃T = x̃T )

=

M∑
h′=1

p(HT+1 = h,HT = h′|X̃1 = x̃1, . . . , X̃T = x̃T )

=

M∑
h′=1

p(HT+1 = h|HT = h′)︸ ︷︷ ︸
=Qh′h

p(HT = h′|X̃1 = x̃1, . . . , X̃T = x̃T )︸ ︷︷ ︸
ξ(T,h′)

The filtering probabilities ξ(t, h′) are calculated using the Forward Backward
algorithm as explained before.
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A The M-step of the HMM model

1. Introducing the problem

We want to maximize : EH|x̃[log(pθ(h, x̃))] with respect to θ = (π,Q, µ,Σ)

We have:

EH|x̃[log(pθ(h, x̃))] =
M∑
h=1

log(πh)ψ(1, h) +

T−1∑
t=1

M∑
h=1

M∑
h′=1

log(Qhh′)ϕ(t, h, h′)

+

T−1∑
t=1

M∑
h=1

log(N (X̃t;µh,Σh))ψ(t, h)

(33)

So, the optimization problem can be decomposed in three sub-problems.

π(i+1) = argmin
π

−
M∑
h=1

log(πh)ψ(1, h) such that π ⊥ ⊮M (34)

Q(i+1) = argmin
Q

−
T−1∑
t=1

M∑
h=1

M∑
h′=1

log(Qhh′)ϕ(t, h, h′) such that
M∑
h′=1

Qhh′ = 1

(35)

(µ(i+1),Σ(i+1)) = argmin
(µ,Σ)

−
T−1∑
t=1

M∑
h=1

log(N (X̃t;µh,Σh))ψ(t, h) (36)

2. Update of the initial state

We use the Langrangian to solve the first optimization problem 34:

L(π, λ) = −
M∑
h=1

log(πh)ψ(1, h) + λ

(
M∑
h=1

πh − 1

)
(37)

We have:

∀h ∈ J1,MK 0 =
∂L
∂πh

(π(i+1), λ) = −ψ(1, h)
π
(i+1)
h

+ λ (38)

Thus,

∀h ∈ J1,MK π
(i+1)
h =

ψ(1, h)

λ
(39)

And from:
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1 =

M∑
h=1

π
(i+1)
h =

M∑
h=1

ψ(1, h)

λ
=

1

λ

M∑
h=1

ψ(1, h)︸ ︷︷ ︸
=1

(40)

We get:

λ = 1 (41)

Therefore,

∀h ∈ J1,MK π
(i+1)
h = ψ(1, h) (42)

3. Update of the transition matrix

Again, we use the Langrangian to solve the second optimization problem
35:

L(Q,λ1, . . . , λM ) = −
T−1∑
t=1

M∑
h=1

M∑
h′=1

log(Qhh′)ϕ(t, h, h′)+

M∑
h=1

λh

(
M∑
h′=1

Qhh′ − 1

)
(43)

We have:

∀(h, h′) ∈ J1,MK× J1,MK 0 =
∂L

∂Qhh′
(Q(i+1), λ) = −

T−1∑
t=1

ϕ(t, h, h′)

Q
(i+1)
hh′

+λh

(44)

Thus,

∀(h, h′) ∈ J1,MK× J1,MK Q
(i+1)
hh′ =

T−1∑
t=1

ϕ(t, h, h′)

λh
(45)

And from:

∀h ∈ J1,MK 1 =

M∑
h′=1

Q
(i+1)
hh′ =

M∑
h′=1


T−1∑
t=1

ϕ(t, h, h′)

λh

 =
1

λh

T−1∑
t=1

M∑
h′=1

ϕ(t, h, h′)︸ ︷︷ ︸
=ψ(t,h)

(46)

We get:
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∀h ∈ J1,MK λh =

T−1∑
t=1

ψ(t, h) (47)

Therefore,

∀(h, h′) ∈ J1,MK× J1,MK Q
(i+1)
hh′ =

T−1∑
t=1

ϕ(t, h, h′)

T−1∑
t=1

ψ(t, h)

(48)

4. Update of the emission distribution We have:

(µ(i+1),Σ(i+1)) = argmin
(µ,Σ)

−
T−1∑
t=1

M∑
h=1

log(N (X̃t;µh,Σh))ψ(t, h)︸ ︷︷ ︸
J(µ,Σ)

(49)

(a) Update µ:

Let’s fix h ∈ J1,MK and t ∈ J1, T K
We have:

log(N (X̃t;µh,Σh)) =
D

2
log(2π)−1

2
log(det(Σh))−

1

2
(X̃t−µh)TΣ−1

h (X̃t−µh)
(50)

We define

ξ : µh
f7−→ µh − X̃t

g7−→ (X̃t − µh)TΣ−1
h (X̃t − µh) (51)

Obviously,
∇f(x) = x (52)

We have

∀(x, ϵ) ∈ RD × RD g(x+ ϵ)− g(x) = (x+ ϵ)TΣ−1
h (x+ ϵ)− xTΣ−1

h x

= ϵTΣ−1
h x+ xTΣ−1

h ϵ+ ϵTΣ−1
h ϵ

= ϵT (Σ−1
h x+ (Σ−1

h )Tx) + o(||ϵ||)
= ϵT (2Σ−1

h x) + o(||ϵ||)
= ⟨2Σ−1

h x), ϵ⟩︸ ︷︷ ︸
dgx(ϵ)

+o(||ϵ||)

= ⟨∇g(x), ϵ⟩
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So,
∇g(x) = 2Σ−1

h x (53)

Therefore,

∀x ∈ RD ⟨∇ξ(µh), x⟩ = d(ξ)µh
(x)

= d(g ◦ f)µh
(x)

= d(g)µh−X̃t
(d(f)µh

(x))

= d(g)µh−X̃t
(⟨∇f(µh), x⟩)

= d(g)µh−X̃t
(x)

= ⟨∇g(µh − X̃t), x⟩
= ⟨2Σ−1

h (µh − X̃t), x⟩

So,

∇ξ(µh) = 2Σ−1
h (µh − X̃t) (54)

Thus,

0 = ∇µh
J(µ

(i+1)
h ,Σ) = −

T∑
t=1

ψ(t, h)Σ−1
h (µh − X̃t) (55)

Therefore,

∀h ∈ J1,MK µ
(i+1)
h =

T∑
t=1

ψ(t, h)X̃t

T∑
t=1

ψ(t, h)

(56)

(b) Update Σ:

Let’s denote Ω = (Ωh)h∈J1,MK = (Σ−1
h )h∈J1,MK

So J becomes a function of µ and Ω:

J(µ,Ω) = −
T−1∑
t=1

M∑
h=1

log(N (X̃t;µh,Ωh))ψ(t, h) (57)

We also have for h ∈ J1,MK and t ∈ J1, T K:

log(N (X̃t;µh,Ωh)) =
D

2
log(2π)−1

2
log(det(Ωh))−

1

2
(X̃t−µh)TΩh(X̃t−µh)

(58)
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Thus, for h ∈ J1,MK:

∇Ωh
J(µ,Ω) = ∇Ωh

(
−
T−1∑
t=1

log(N (X̃t;µh,Ωh))ψ(t, h)

)
(59)

= −
T−1∑
t=1

ψ(t, h)

−1

2
∇Ωh

log(det(Ωh)︸ ︷︷ ︸
:=u(Ωh)

+
1

2
∇Ωh

(X̃t − µh)TΩh(X̃t − µh)︸ ︷︷ ︸
:=v(Ωh)


(60)

Let’s calculate ∇Ωh
u(Ωh)

∀H ∈ RD×D u(Ωh +H)− u(Ωh) = log(det(Ωh +H))− log(det(Ωh))

= log(det(Ω
1
2

h (ID +Ω
−1
2

h HΩ
−1
2

h )Ω
1
2

h ))− log(det(Ωh))

= log(det(Ωh)) + log(det(ID +Ω
−1
2

h HΩ
−1
2

h ))− log(det(Ωh))

= log(det(ID +Ω
−1
2

h HΩ
−1
2

h ))
(61)

(62)

We can decompose Ω
−1
2

h HΩ
−1
2

h as follows:

Ω
−1
2

h HΩ
−1
2

h = U

ω1

. . .
ωD

UT

The equation 61 becomes:

∀H ∈ RD×D u(Ωh +H)− u(Ωh) =
D∑
i=1

log(1 + ωi) (63)

=

D∑
i=1

ωi + o(||H||) (64)

= tr(Ω
−1
2

h HΩ
−1
2

h ) + o(||H||) (65)

= tr(Ω−1
h H)︸ ︷︷ ︸

duΩh
(H)

+o(||H||) (66)

= ⟨∇Ωh
u(Ωh), H⟩+ o(||H||)

(67)

(68)
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Therefore,
∇Ωh

u(Ωh) = Ω−1
h = Σh (69)

Let’s calculate ∇Ωh
v(Ωh). We have:

∀H ∈ RD×D v(Ωh +H)− v(Ωh) = (X̃t − µh)T (Ωh +H)(X̃t − µh)− (X̃t − µh)TΩh(X̃t − µh)

(70)

= tr((X̃t − µh)T (Ωh +H)(X̃t − µh))− tr((X̃t − µh)TΩh(X̃t − µh))
(71)

= tr(H(X̃t − µh)T (X̃t − µh))
(72)

= tr((X̃t − µh)T (X̃t − µh)H)
(73)

= tr(((X̃t − µh)(X̃t − µh)T )TH)︸ ︷︷ ︸
dvΩh

(H)

(74)

= ⟨∇Ωh
v(Ωh), H⟩ (75)

(76)

Therefore,
∇Ωh

v(Ωh) = (X̃t − µh)(X̃t − µh)T (77)

From the equation 60, 69 and 77, we conclude:

∇Ωh
J(µ,Ω) = −

T−1∑
t=1

ψ(t, h)

(
−1

2
Σh +

1

2
(X̃t − µh)(X̃t − µh)T

)
(78)

We set the gradient with respect to Σ to zero, we obtain,

0 = ∇µh
J(µ,Σ

(i+1)
h ) = −

T−1∑
t=1

ψ(t, h)

(
−1

2
Σ

(i+1)
h +

1

2
(X̃t − µh)(X̃t − µh)T

)
(79)

Finally,

∀h ∈ J1,MK Σ
(i+1)
h =

T∑
t=1

ψ(t, h)(X̃t − µh)(X̃t − µh)T

T∑
t=1

ψ(t, h)

(80)
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