Systematic Trading Strategies with Machine Learning Algorithms

Latent Variable Models in Financial Asset Regime Detection

May 1, 2025

(日) (國) (필) (필) (필) 표

From GMMs to HMMs

Recap: Gaussian Mixture Models

Introducing Hidden Markov Models

An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

From GMMs to HMMs

Recap: Gaussian Mixture Models Introducing Hidden Markov Models An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Hachem MADMOUN

・ 何 ト ・ ヨ ト ・ ヨ ト

From GMMs to HMMs

Recap: Gaussian Mixture Models

Introducing Hidden Markov Models

An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

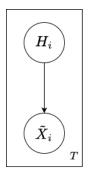
Predicting the next hidden state

Forecasting Market Turbulence Regimes

A B A A B A

Gaussian Mixture Models (GMMs)

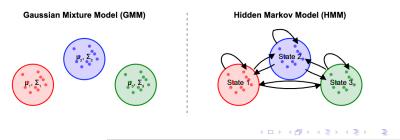
- Goal: Represent complex, multimodal distributions using a mixture of Gaussians
- Latent variable: $H_i \sim \mathcal{M}(1, \pi_1, \dots, \pi_M)$
- Observation: $ilde{X}_i \mid H_i = m \sim \mathcal{N}(\mu_m, \Sigma_m)$
- EM algorithm used to estimate parameters θ = (π, μ, Σ)



- 4 回 ト 4 ヨ ト 4 ヨ ト

Limitation of GMMs

- GMMs assume hidden variables H_1, \ldots, H_T are i.i.d.
- Ignores temporal structure in sequential data
- Need a model where:
 - Hidden states evolve over time
 - Observations depend on the current hidden state
- This leads to Hidden Markov Models (HMMs)



From GMMs to HMMs

Recap: Gaussian Mixture Models

Introducing Hidden Markov Models

An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

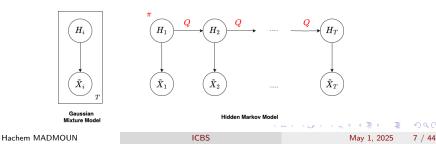
Predicting the next hidden state

Forecasting Market Turbulence Regimes

A B b A B b

Hidden Markov Models (HMMs)

- ▶ Latent states: H_1, \ldots, H_T with M possible hidden states.
- Observations: $\tilde{X}_1, \ldots, \tilde{X}_T \in \mathbb{R}^d$ or $\mathcal{O} = \{o_1, \ldots, o_D\}$
- Markov property (transition model):
 - The hidden state sequence forms a first-order Markov chain.
- Emission independence:
 - Observations are conditionally independent given the current hidden state:

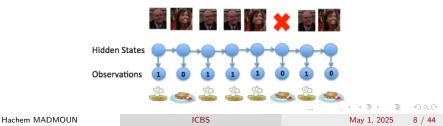


Parameterization (Discrete Emissions)

- Observation space: $\mathcal{O} = \{o_1, \dots, o_D\}$
- Hidden state dynamics:
 - Initial distribution: $\pi_m = P(H_1 = m)$
 - Transition matrix: $Q_{ij} = P(H_{t+1} = j | H_t = i)$
- Emission distribution:
 - Emission matrix: $O_{mj} = P(\tilde{X}_t = o_j | H_t = m)$
- Parameter set:

$$\theta = (\pi, Q, O)$$

Example from Programming Session 3:



Parameterization (Continuous Emissions)

- Number of hidden states: M
- Hidden state dynamics:
 - Initial distribution: $\pi_m = P(H_1 = m)$
 - Transition matrix: $Q_{ij} = P(H_{t+1} = j | H_t = i)$

Emission model (continuous):

$$\tilde{X}_t \mid H_t = m \sim \mathcal{N}_d(\mu_m, \Sigma_m)$$

Parameter set:

$$\theta = (\pi, Q, \mu, \Sigma)$$

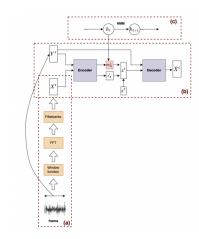


Figure: Forecasting Market Turbulence Regimes

From GMMs to HMMs

Recap: Gaussian Mixture Models

Introducing Hidden Markov Models

An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Hachem MADMOUN

• • = • • = •

An example - Problem Context

Who Ate Ross's Sandwich?

Dr. Ross Geller, a paleontologist at New York University, faces a peculiar dilemma.

- Every day, he brings a sandwich and stores it in the department refrigerator.
- His sandwich frequently disappears before lunch.
- He records what he can observe:
 - 0: Sandwich is safe
 - 1: Sandwich is missing

▲ □ ▶ ▲ □ ▶ ▲ □

An example - Emission Probabilities

Hidden States (Unobserved):

- State 0: Dr. Donald is present 90% chance sandwich is eaten
- State 1: Dr. Charlie is present 50% chance sandwich is eaten
- State 2: Neither is present 0% chance sandwich is eaten

Observation space:

 $\mathcal{O} = \{0 : \mathsf{Safe}, 1 : \mathsf{Missing}\}$

Emission matrix O:

$$O = \begin{bmatrix} 0.1 & 0.9 \\ 0.5 & 0.5 \\ 1.0 & 0.0 \end{bmatrix}$$

State 0	State 1	State 2
$\begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}$	$\begin{pmatrix} 0.5\\ 0.5 \end{pmatrix}$	$\begin{pmatrix} 1. \\ 0. \end{pmatrix}$

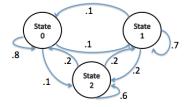
An example - Initial and Transition Probabilities

Initial state distribution (uniform):

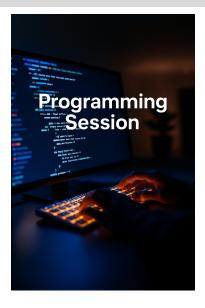
$$\pi = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$$

Transition matrix Q:

$$Q = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.2 & 0.2 & 0.6 \end{bmatrix}$$



Imperial College



Programming Session 3: Section 1

- Section 1: Create the Synthetic Data
- Click here to access the programming session

Solution will be posted tonight on the GitHub page.

 Click here to access ccess the GitHub Page

Click here to participate in the poll

Hachem MADMOUN

ICBS

May 1, 2025 15 / 44

< □ > < □ > < □ > < □ > < □ > < □ >

From GMMs to HMMs

Recap: Gaussian Mixture Models Introducing Hidden Markov Models An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

• • = • • = •

From GMMs to HMMs

Recap: Gaussian Mixture Models Introducing Hidden Markov Models An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Hachem MADMOUN

• • = • • = •

Goal: Compute the likelihood of the observed sequence $\tilde{\mathbf{x}} = (\tilde{x}_1, \dots, \tilde{x}_T)$ given the model parameters θ .

We illustrate this in the case of **continuous emissions**, where each hidden state emits a multivariate Gaussian.

$$p_{\theta}(\tilde{\mathbf{x}}) = \sum_{h_1} \sum_{h_2} \cdots \sum_{h_T} \pi_{h_1} \prod_{t=1}^{T-1} Q_{h_t, h_{t+1}} \prod_{t=1}^T \mathcal{N}(\tilde{x}_t; \mu_{h_t}, \Sigma_{h_t})$$

This computation is intractable due to the exponential number of hidden state paths (M^T sequences).

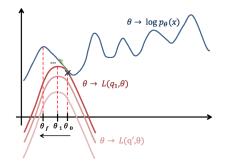
Approach: Use a recursive and efficient approach (**The Forward Algorithm**).

Hachem	MADMOUN
--------	---------

A D N A B N A B N A B N

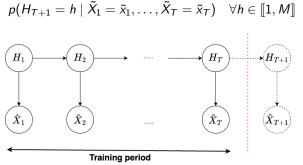
Goal: Estimate the model parameters $\theta = (\pi, Q, \mu, \Sigma)$ from a sequence of observations $\tilde{\mathbf{x}}$.

Approach: Expectation-Maximization (EM) algorithm:



Goal: Compute the distribution over hidden states at time T + 1 given past observations and learned parameters.

Approach: Once the model is trained using the EM algorithm, we can use the filtering probabilities $[\xi(T, h')]_{1 \le h' \le M}$ (which will be introduced later) to make the prediction:



From GMMs to HMMs

Recap: Gaussian Mixture Models Introducing Hidden Markov Models An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Hachem MADMOUN

• • = • • = •

Filtering and Smoothing Probabilities

B Imperial College Business School

To solve these problems, we introduce the following probabilities:

• Filtering probabilities: $\xi \in \mathbb{R}^{T \times M}$

$$orall (t,h) \in \llbracket 1, T
rbracket imes \llbracket 1, M
rbracket, \ \xi(t,h) :=
ho(H_t = h \mid ilde{X}_1, \dots, ilde{X}_t)$$

Smoothing probabilities:

 $\blacktriangleright \psi \in \mathbb{R}^{T \times M}$

$$orall (t,h) \in \llbracket 1,T
rbracket imes \llbracket 1,M
rbracket,
onumber \ \psi(t,h) := p(H_t = h \mid ilde{X}_1,\ldots, ilde{X}_T)$$

 $\blacktriangleright \ \phi \in \mathbb{R}^{T-1 \times M \times M}$

$$\forall (t, h, h') \in \llbracket 1, T - 1 \rrbracket \times \llbracket 1, M \rrbracket^2,$$

$$\phi(t, h, h') := p(H_t = h, H_{t+1} = h' \mid \tilde{X}_1, \dots, \tilde{X}_T)$$

Hachem MADMOUN

Forward Propagation: Filtering Probabilities

May 1, 2025

23/44

Goal: Compute filtering probabilities:

 $\forall (t,h) \in \llbracket 1,T
bracket imes \llbracket 1,M
bracket, \quad \xi(t,h) := p(H_t = h \mid ilde{X}_1,\ldots, ilde{X}_t)$

We introduce the alpha variables, which correspond to the joint probability of the observed sequence up to time t and the hidden state at time t:

$$\forall (t,h) \in \llbracket 1,T \rrbracket imes \llbracket 1,M \rrbracket, \quad lpha(t,h) := p(ilde{X}_1,\ldots, ilde{X}_t,H_t=h)$$

We also introduce the emission tensor Γ(t), a diagonal matrix encoding the likelihood of the current observation conditioned on each possible hidden state:

$$\forall t \in \llbracket 1, T \rrbracket : \ \Gamma(t) := \begin{pmatrix} p(\tilde{X}_t \mid H_t = 1) & & \\ & \ddots & \\ & & p(\tilde{X}_t \mid H_t = M) \end{pmatrix} \in \mathbb{R}^{M \times M}$$

Forward Propagation: Filtering Probabilities

Vector notation:

$$\alpha_t = (\alpha(t, 1), \dots, \alpha(t, M))^T \in \mathbb{R}^M$$

$$\xi_t = (\xi(t, 1), \dots, \xi(t, M))^T \in \mathbb{R}^M$$

▶ Key results: Click here for the detailed calculations

Forward Propagation: Recursive calculation of α variables:

$$\alpha_1 = \Gamma(1)\pi, \quad \forall t \geq 2: \alpha_t = \Gamma(t)Q^T \alpha_{t-1}$$

Filtering probabilities from alpha:

$$\forall t \in \llbracket 1, T \rrbracket \quad \xi_t = \frac{\alpha_t}{\mathbbm{1}_M^T \alpha_t}$$

Solving Objective 1:
$$p(\tilde{\mathbf{x}}) = \mathbb{1}_{M}^{T} \alpha_{T}$$

Hachem MADMOUN

May 1, 2025 24 / 44

Backward Propagation: Smoothing Probabilities

Goal: Compute smoothing probabilities:

 $\begin{aligned} \forall (t,h) \in \llbracket 1,T \rrbracket \times \llbracket 1,M \rrbracket, \quad \psi(t,h) &:= p(H_t = h \mid \tilde{X}_{1:T}) \\ \forall (t,h,h') \in \llbracket 1,T \rrbracket \times \llbracket 1,M \rrbracket^2, \quad \phi(t,h,h') &:= p(H_t = h,H_{t+1} = h' \mid \tilde{X}_{1:T}) \end{aligned}$

We introduce the **beta variables**, which represent the likelihood of future observations given the current state:

 $\forall (t,h) \in \llbracket 1,T \rrbracket \times \llbracket 1,M \rrbracket, \quad \beta(t,h) := p(\tilde{X}_{t+1:T} \mid H_t = h)$

Vector / Matrix notation:

$$\beta_t = (\beta(t, 1), \dots, \beta(t, M))^T \in \mathbb{R}^M$$

$$\psi_t = [\psi(t, h)]_h \in \mathbb{R}^M, \quad \phi_t = [\phi(t, h, h')]_{h, h'} \in \mathbb{R}^{M \times M}$$

Imperial College

Backward Propagation: Smoothing Probabilities Bunnerial C

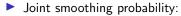
▶ Key results: Click here for the detailed calculations

• Backward Propagation: Recursive calculation of β variables:

$$\beta_T = \mathbb{1}_M, \quad \forall t \leq T - 1 : \beta_t = Q\Gamma(t+1)\beta_{t+1}$$

Smoothing probability using α and β :

$$\forall t \in [\![1, T]\!] \quad \psi_t = \frac{\alpha_t \circ \beta_t}{\mathbbm{1}_M^T \alpha_T}$$



$$\forall t \in \llbracket 1, T \rrbracket \quad \phi_t = \frac{\mathsf{diag}(\alpha_t) Q \Gamma(t+1) \mathsf{diag}(\beta_{t+1})}{\mathbb{1}_M^T \alpha_T}$$

Hachem MADMOUN

May 1, 2025 26 / 44

From GMMs to HMMs

Recap: Gaussian Mixture Models Introducing Hidden Markov Models An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Hachem MADMOUN

• • = • • = •

Algorithm EM Algorithm

Require: Observations $\tilde{X} = {\tilde{x}_1, \dots, \tilde{x}_T}$ **Ensure:** Optimal parameters θ

- 1: Initialization: Choose initial parameters $\theta^{(0)}$.
- 2: while not converged do
- 3: **E-step:** Update *q* to maximize the lower bound with respect to *q*

$$q_{t+1} \in rg\max_q \left(\mathcal{L}(q, heta_t)
ight)$$

4: **M-step:** Update θ to maximize the lower bound with respect to θ

$$heta_{t+1} \in rg\max_{ heta} \left(\mathcal{L}(q_{t+1}, heta)
ight)$$

- 5: end while
- 6: return Optimized parameters θ^*

Hachem MADMOUN

- We apply EM to estimate parameters of an HMM given observations X̃_{1:T}.
- The E-step computes the expected complete log-likelihood with respect to the posterior distribution over hidden states:

$$\mathbb{E}_{\mathbf{h}|\tilde{\mathbf{x}}}[\log p_{\theta}(\mathbf{h}, \tilde{\mathbf{x}})]$$

▶ At iteration *i*, we decompose the complete log-likelihood as:

$$\log(p_{\theta^{(i)}}(\mathbf{h}, \tilde{\mathbf{x}})) = \log(\pi_{h_1}^{(i)}) + \sum_{t=1}^{T-1} \log(Q_{h_t, h_{t+1}}^{(i)}) + \sum_{t=1}^{T} \log(\mathcal{N}(\tilde{X}_t; \mu_{h_t}^{(i)}, \Sigma_{h_t}^{(i)}))$$

The expected log-likelihood is computed with respect to the posterior distribution:

$$\mathbb{E}_{H|\tilde{\mathbf{x}}}[\log(\pi_{h_1})] = \sum_{h=1}^{M} \log(\pi_h) p(H_1 = h \mid \tilde{\mathbf{x}})$$
$$\mathbb{E}_{H|\tilde{\mathbf{x}}}[\log(Q_{h_t, h_{t+1}})] = \sum_{h=1}^{M} \sum_{h'=1}^{M} \log(Q_{hh'}) p(H_t = h, H_{t+1} = h' \mid \tilde{\mathbf{x}})$$
$$\mathbb{E}_{H|\tilde{\mathbf{x}}}[\log(\mathcal{N}(\tilde{X}_t; \mu_{h_t}, \Sigma_{h_t}))] = \sum_{h=1}^{M} \log(\mathcal{N}(\tilde{X}_t; \mu_h, \Sigma_h)) p(H_t = h \mid \tilde{\mathbf{x}})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We use the smoothing probabilities ψ and φ, which are computed using the Forward-Backward algorithm.
- This allows us to compute the expected complete log-likelihood w.r.t the posterior distribution:

$$\begin{split} \mathbb{E}_{\mathbf{h}|\tilde{\mathbf{x}}}[\log p_{\theta}(\mathbf{h}, \tilde{\mathbf{x}})] &= \sum_{h=1}^{M} \log(\pi_h) \psi(1, h) + \sum_{t=1}^{T-1} \sum_{h, h'} \log(Q_{hh'}) \phi(t, h, h') \\ &+ \sum_{t=1}^{T} \sum_{h=1}^{M} \log(\mathcal{N}(\tilde{X}_t; \mu_h, \Sigma_h)) \psi(t, h) \end{split}$$

Click here for the detailed calculations

Hachem	MADMOUN
--------	---------

May 1, 2025 31 / 44

EM for HMMs: The M-Step

• Maximize the expected log-likelihood w.r.t. parameters θ .

Parameter update rules:

$$\begin{aligned} \pi_{h}^{(i+1)} &= \psi(1,h) \\ Q_{h,h'}^{(i+1)} &= \frac{\sum_{t=1}^{T-1} \phi(t,h,h')}{\sum_{t=1}^{T-1} \psi(t,h)} \\ \mu_{h}^{(i+1)} &= \frac{\sum_{t=1}^{T} \psi(t,h) \tilde{X}_{t}}{\sum_{t=1}^{T} \psi(t,h)} \\ \Sigma_{h}^{(i+1)} &= \frac{\sum_{t=1}^{T} \psi(t,h) (\tilde{X}_{t} - \mu_{h}^{(i)}) (\tilde{X}_{t} - \mu_{h}^{(i)})^{T}}{\sum_{t=1}^{T} \psi(t,h)} \end{aligned}$$

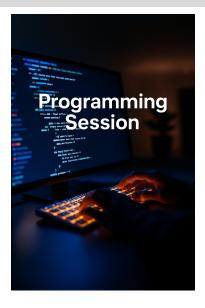
Click here for the detailed calculations

A (10) × A (10) × A (10)

May 1, 2025

32 / 44

Imperial College Business School



Programming Session 3: Section 2

- Section 2: The Learning Problem -EM Algorithm
- Click here to access the programming session

Solution will be posted tonight on the GitHub page.

 Click here to access ccess the GitHub Page

Click here to participate in the poll

Hachem MADMOUN

ICBS

May 1, 2025 34 / 44

< □ > < □ > < □ > < □ > < □ > < □ >

From GMMs to HMMs

Recap: Gaussian Mixture Models Introducing Hidden Markov Models An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Hachem MADMOUN

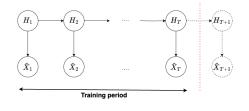
• • = • • = •

Predicting the Next Hidden State

- ► After training the model with the EM algorithm, we want to predict the distribution over hidden states at the next time step T + 1.
- Objective: Compute

$$\forall h \in \llbracket 1, M \rrbracket, \quad p(H_{\mathcal{T}+1} = h \mid \tilde{X}_1 = \tilde{x}_1, \dots, \tilde{X}_{\mathcal{T}} = \tilde{x}_{\mathcal{T}})$$

This is useful for forecasting future regimes such as market turbulence.

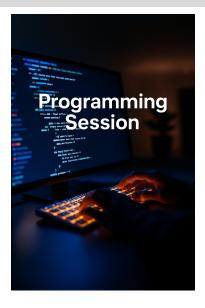


▶ Using the filtering probabilities $\xi(T, \cdot)$, we derive for all $h \in \llbracket 1, M \rrbracket$:

$$p(H_{T+1} = h \mid \tilde{X}_{1:T}) = \sum_{h'=1}^{M} p(H_{T+1} = h, H_T = h' \mid \tilde{X}_{1:T})$$
$$= \sum_{h'=1}^{M} \underbrace{p(H_{T+1} = h \mid H_T = h')}_{= Q_{h'h}} \cdot \underbrace{p(H_T = h' \mid \tilde{X}_{1:T})}_{= \xi(T,h')}$$

The filtering probabilities are computed using the Forward algorithm introduced earlier.

< □ > < 同 > < 回 > < Ξ > < Ξ



Programming Session 3: Section 3

- Section 3: Predicting the next Hidden State / Next Observation
- Click here to access the programming session

Solution will be posted tonight on the GitHub page.

 Click here to access ccess the GitHub Page

From GMMs to HMMs

Recap: Gaussian Mixture Models Introducing Hidden Markov Models An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Image: A Image: A

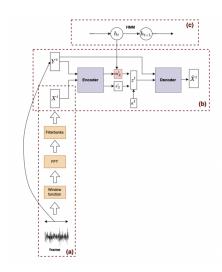
Low Turbulence Model Overview

Summary: The Low Turbulence Model processes return data to detect stable market regimes:

- Extract spectral information (Step a). [3]
- Learn low-dimensional structure (Step b). [1]
- Forecast regimes with HMMs (Step c). [4]

The model outputs regime probabilities used in asset allocation.

See [2] for full methodology and results.



Click here to participate in the poll

Hachem MADMOUN

May 1, 2025 41 / 44

< □ > < □ > < □ > < □ > < □ > < □ >

Click here to take the quiz

Hachem MADMOUN

ICBS

May 1, 2025 42 / 44

A D N A B N A B N A B N

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- [1] Diederik P Kingma, Max Welling, et al. *Auto-encoding* variational bayes. 2013.
- [2] Hachem Madmoun. "Creating Investment Strategies Based on Machine Learning Algorithms". PhD thesis. École des Ponts ParisTech, 2022.
- [3] Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.
- [4] Lawrence R Rabiner. "A tutorial on hidden Markov models and selected applications in speech recognition". In: *Proceedings of the IEEE* 77.2 (1989), pp. 257–286.