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Gaussian Mixture Models (GMMs)

▶ Goal: Represent complex, multimodal
distributions using a mixture of
Gaussians

▶ Latent variable:
Hi ∼ M(1, π1, . . . , πM)

▶ Observation:
X̃i | Hi = m ∼ N (µm,Σm)

▶ EM algorithm used to estimate
parameters θ = (π, µ,Σ)
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Limitation of GMMs

▶ GMMs assume hidden variables H1, . . . ,HT are i.i.d.

▶ Ignores temporal structure in sequential data

▶ Need a model where:

▶ Hidden states evolve over time

▶ Observations depend on the current hidden state

▶ This leads to Hidden Markov Models (HMMs)
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Hidden Markov Models (HMMs)

▶ Latent states: H1, . . . ,HT with M possible hidden states.

▶ Observations: X̃1, . . . , X̃T ∈ Rd or O = {o1, . . . , oD}
▶ Markov property (transition model):

▶ The hidden state sequence forms a first-order Markov chain.

▶ Emission independence:

▶ Observations are conditionally independent given the current
hidden state:
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Parameterization (Discrete Emissions)

▶ Observation space: O = {o1, . . . , oD}
▶ Hidden state dynamics:

▶ Initial distribution: πm = P(H1 = m)
▶ Transition matrix: Qij = P(Ht+1 = j | Ht = i)

▶ Emission distribution:
▶ Emission matrix: Omj = P(X̃t = oj | Ht = m)

▶ Parameter set:
θ = (π,Q,O)

▶ Example from Programming Session 3:
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Parameterization (Continuous Emissions)

▶ Number of hidden states: M

▶ Hidden state dynamics:

▶ Initial distribution:
πm = P(H1 = m)

▶ Transition matrix:
Qij = P(Ht+1 = j | Ht = i)

▶ Emission model (continuous):

X̃t | Ht = m ∼ Nd(µm,Σm)

▶ Parameter set:

θ = (π,Q, µ,Σ)
Figure: Forecasting Market
Turbulence Regimes

Hachem MADMOUN ICBS May 1, 2025 9 / 44



Outline

From GMMs to HMMs

Recap: Gaussian Mixture Models

Introducing Hidden Markov Models

An example: Discrete HMMs

Estimation Problems

Objectives

The Filtering-Smoothing Probabilities

The Learning Problem

Predicting the next hidden state

Forecasting Market Turbulence Regimes

Hachem MADMOUN ICBS May 1, 2025 10 / 44



An example - Problem Context

Who Ate Ross’s Sandwich?
Dr. Ross Geller, a paleontologist at New
York University, faces a peculiar dilemma.

▶ Every day, he brings a sandwich and
stores it in the department refrigerator.

▶ His sandwich frequently disappears
before lunch.

▶ He records what he can observe:

▶ 0: Sandwich is safe

▶ 1: Sandwich is missing
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An example - Emission Probabilities

Hidden States (Unobserved):

▶ State 0: Dr. Donald is present —
90% chance sandwich is eaten

▶ State 1: Dr. Charlie is present —
50% chance sandwich is eaten

▶ State 2: Neither is present — 0%
chance sandwich is eaten

Observation space:
O = {0 : Safe, 1 : Missing}

Emission matrix O:

O =

0.1 0.9
0.5 0.5
1.0 0.0


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An example - Initial and Transition Probabilities

Initial state distribution (uniform):

π =

[
1

3
,
1

3
,
1

3

]

Transition matrix Q:

Q =

0.8 0.1 0.1
0.1 0.7 0.2
0.2 0.2 0.6


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Programming Session 3: Section 1

▶ Section 1: Create the Synthetic
Data

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page
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Click here to participate in the poll
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Objective 1: Inference Problem

Goal: Compute the likelihood of the observed sequence x̃ = (x̃1, . . . , x̃T )
given the model parameters θ.

We illustrate this in the case of continuous emissions, where each
hidden state emits a multivariate Gaussian.

pθ(x̃) =
∑
h1

∑
h2

· · ·
∑
hT

πh1

T−1∏
t=1

Qht ,ht+1

T∏
t=1

N (x̃t ;µht ,Σht )

This computation is intractable due to the exponential number of hidden
state paths (MT sequences).

Approach: Use a recursive and efficient approach (The Forward
Algorithm).
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Objective 2: The Learning Problem

Goal: Estimate the model parameters θ = (π,Q, µ,Σ) from a sequence
of observations x̃.

Approach: Expectation-Maximization (EM) algorithm:
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Objective 3: Predicting the Next Hidden State

Goal: Compute the distribution over hidden states at time T + 1 given
past observations and learned parameters.

Approach: Once the model is trained using the EM algorithm, we can
use the filtering probabilities [ξ(T , h′)]1≤h′≤M (which will be introduced
later) to make the prediction:

p(HT+1 = h | X̃1 = x̃1, . . . , X̃T = x̃T ) ∀h ∈ J1,MK
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Filtering and Smoothing Probabilities

To solve these problems, we introduce the following probabilities:

▶ Filtering probabilities: ξ ∈ RT×M

∀(t, h) ∈ J1,T K × J1,MK,

ξ(t, h) := p(Ht = h | X̃1, . . . , X̃t)

▶ Smoothing probabilities:

▶ ψ ∈ RT×M

∀(t, h) ∈ J1,T K × J1,MK,

ψ(t, h) := p(Ht = h | X̃1, . . . , X̃T )

▶ ϕ ∈ RT−1×M×M

∀(t, h, h′) ∈ J1,T − 1K × J1,MK2,

ϕ(t, h, h′) := p(Ht = h,Ht+1 = h′ | X̃1, . . . , X̃T )

Hachem MADMOUN ICBS May 1, 2025 22 / 44



Forward Propagation: Filtering Probabilities

▶ Goal: Compute filtering probabilities:

∀(t, h) ∈ J1,T K × J1,MK, ξ(t, h) := p(Ht = h | X̃1, . . . , X̃t)

▶ We introduce the alpha variables, which correspond to the joint
probability of the observed sequence up to time t and the hidden
state at time t:

∀(t, h) ∈ J1,T K × J1,MK, α(t, h) := p(X̃1, . . . , X̃t ,Ht = h)

▶ We also introduce the emission tensor Γ(t), a diagonal matrix
encoding the likelihood of the current observation conditioned on
each possible hidden state:

∀t ∈ J1,T K : Γ(t) :=

p(X̃t | Ht = 1)
. . .

p(X̃t | Ht = M)

 ∈ RM×M
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Forward Propagation: Filtering Probabilities

▶ Vector notation:

αt = (α(t, 1), . . . , α(t,M))T ∈ RM

ξt = (ξ(t, 1), . . . , ξ(t,M))T ∈ RM

▶ Key results: Click here for the detailed calculations

▶ Forward Propagation: Recursive calculation of α variables:

α1 = Γ(1)π, ∀t ≥ 2 : αt = Γ(t)QTαt−1

▶ Filtering probabilities from alpha:

∀t ∈ J1,T K ξt =
αt

1
T
Mαt

▶ Solving Objective 1: p(x̃) = 1
T
MαT
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Backward Propagation: Smoothing Probabilities

▶ Goal: Compute smoothing probabilities:

∀(t, h) ∈ J1,T K × J1,MK, ψ(t, h) := p(Ht = h | X̃1:T )

∀(t, h, h′) ∈ J1,T K × J1,MK2, ϕ(t, h, h′) := p(Ht = h,Ht+1 = h′ | X̃1:T )

▶ We introduce the beta variables, which represent the likelihood of
future observations given the current state:

∀(t, h) ∈ J1,T K × J1,MK, β(t, h) := p(X̃t+1:T | Ht = h)

▶ Vector / Matrix notation:

βt = (β(t, 1), . . . , β(t,M))T ∈ RM

ψt = [ψ(t, h)]h ∈ RM , ϕt = [ϕ(t, h, h′)]h,h′ ∈ RM×M
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Backward Propagation: Smoothing Probabilities

▶ Key results: Click here for the detailed calculations

▶ Backward Propagation: Recursive calculation of β variables:

βT = 1M , ∀t ≤ T − 1 : βt = QΓ(t + 1)βt+1

▶ Smoothing probability using α and β:

∀t ∈ J1,T K ψt =
αt ◦ βt
1
T
MαT

▶ Joint smoothing probability:

∀t ∈ J1,T K ϕt =
diag(αt)QΓ(t + 1)diag(βt+1)

1
T
MαT
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Learning the Parameters: EM Algorithm

Algorithm EM Algorithm

Require: Observations X̃ = {x̃1, . . . , x̃T}
Ensure: Optimal parameters θ
1: Initialization: Choose initial parameters θ(0).
2: while not converged do
3: E-step: Update q to maximize the lower bound with respect

to q
qt+1 ∈ argmax

q
(L(q, θt))

4: M-step: Update θ to maximize the lower bound with respect
to θ

θt+1 ∈ argmax
θ

(L(qt+1, θ))

5: end while
6: return Optimized parameters θ∗
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EM for HMMs: The E-Step

▶ We apply EM to estimate parameters of an HMM given
observations X̃1:T .

▶ The E-step computes the expected complete log-likelihood with
respect to the posterior distribution over hidden states:

Eh|x̃[log pθ(h, x̃)]

▶ At iteration i , we decompose the complete log-likelihood as:

log(pθ(i)(h, x̃)) = log(π
(i)
h1
)+

T−1∑
t=1

log(Q
(i)
ht ,ht+1

)+
T∑
t=1

log(N (X̃t ;µ
(i)
ht
,Σ

(i)
ht
))
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EM for HMMs: The E-Step

The expected log-likelihood is computed with respect to the posterior
distribution:

EH|x̃[log(πh1)] =
M∑
h=1

log(πh)p(H1 = h | x̃)

EH|x̃[log(Qht ,ht+1)] =
M∑
h=1

M∑
h′=1

log(Qhh′)p(Ht = h,Ht+1 = h′ | x̃)

EH|x̃[log(N (X̃t ;µht ,Σht ))] =
M∑
h=1

log(N (X̃t ;µh,Σh))p(Ht = h | x̃)
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EM for HMMs: The E-Step

▶ We use the smoothing probabilities ψ and ϕ, which are computed
using the Forward-Backward algorithm.

▶ This allows us to compute the expected complete log-likelihood
w.r.t the posterior distribution:

Eh|x̃[log pθ(h, x̃)] =
M∑
h=1

log(πh)ψ(1, h) +
T−1∑
t=1

∑
h,h′

log(Qhh′)ϕ(t, h, h
′)

+
T∑
t=1

M∑
h=1

log(N (X̃t ;µh,Σh))ψ(t, h)

▶ Click here for the detailed calculations
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EM for HMMs: The M-Step

▶ Maximize the expected log-likelihood w.r.t. parameters θ.

▶ Parameter update rules:

π
(i+1)
h = ψ(1, h)

Q
(i+1)
h,h′ =

∑T−1
t=1 ϕ(t, h, h′)∑T−1
t=1 ψ(t, h)

µ
(i+1)
h =

∑T
t=1 ψ(t, h)X̃t∑T
t=1 ψ(t, h)

Σ
(i+1)
h =

∑T
t=1 ψ(t, h)(X̃t − µ

(i)
h )(X̃t − µ

(i)
h )T∑T

t=1 ψ(t, h)

▶ Click here for the detailed calculations
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Programming Session 3: Section 2

▶ Section 2: The Learning Problem -
EM Algorithm

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page
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Predicting the Next Hidden State

▶ After training the model with the EM algorithm, we want to predict
the distribution over hidden states at the next time step T + 1.

▶ Objective: Compute

∀h ∈ J1,MK, p(HT+1 = h | X̃1 = x̃1, . . . , X̃T = x̃T )

▶ This is useful for forecasting future regimes such as market
turbulence.
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Predicting the Next Hidden State

▶ Using the filtering probabilities ξ(T , ·), we derive for all h ∈ J1,MK:

p(HT+1 = h | X̃1:T ) =
M∑

h′=1

p(HT+1 = h,HT = h′ | X̃1:T )

=
M∑

h′=1

p(HT+1 = h | HT = h′)︸ ︷︷ ︸
=Qh′h

· p(HT = h′ | X̃1:T )︸ ︷︷ ︸
= ξ(T ,h′)

▶ The filtering probabilities are computed using the Forward algorithm
introduced earlier.
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Programming Session 3: Section 3

▶ Section 3: Predicting the next
Hidden State / Next Observation

▶ Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

▶ Click here to access ccess the
GitHub Page
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Low Turbulence Model Overview

Summary: The Low Turbulence
Model processes return data to
detect stable market regimes:

▶ Extract spectral information
(Step a). [3]

▶ Learn low-dimensional
structure (Step b). [1]

▶ Forecast regimes with HMMs
(Step c). [4]

The model outputs regime
probabilities used in asset allocation.

See [2] for full methodology and
results.
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Click here to participate in the poll
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Click here to take the quiz
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Thank you for your attention
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