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Gaussian Mixture Models (GMMs) | imosriat cotiege

Business School

» Goal: Represent complex, multimodal
distributions using a mixture of
Gaussians

» Latent variable:
Hi ~ M(lvﬂ'l? o ,7TM)

> Qbservation:
Xi| Hi=m~ N(ptm, Xm)

» EM algorithm used to estimate T
parameters 6 = (7, u, L)
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Limitation of GMMs I Imperial College

Business School

» GMMs assume hidden variables Hy,..., Ht arei.i.d.
» Ignores temporal structure in sequential data

» Need a model where:
» Hidden states evolve over time

» Observations depend on the current hidden state

» This leads to Hidden Markov Models (HMMs)

Gaussian Mixture Model (GMM) Hidden Markov Model (HMM)
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Hidden Markov Models (HMMs) | imosriat cotiege
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» Latent states: Hi,..., Hr with M possible hidden states.
» Observations: )?1, e ,)N(T €Réor O ={oy,...,0p}
> Markov property (transition model):
» The hidden state sequence forms a first-order Markov chain.

» Emission independence:

» Observations are conditionally independent given the current
hidden state:

T

() Ry K N

T

Gaussian

Mixture Model Hidden Markov Model
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Parameterization (Discrete Emissions) | imosriat cotiege
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» Observation space: O ={o1,...,0p}
» Hidden state dynamics:

» Initial distribution: 7, = P(Hy = m)

» Transition matrix: Qj = P(Her1 = | He = i)
» Emission distribution:

> Emission matrix: Op; = P(X; = o | Hy = m)

> Parameter set:
0= (mQ,0)

» Example from Programming Session 3:

EEEEEx B
Hidden States ﬁﬂwﬁﬁfﬁﬁ

obsenvations (@) (@ (@ @ @ @ @ @
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Parameterization (Continuous Emissions) | imosriat cotiege
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» Number of hidden states: M

» Hidden state dynamics:

» |nitial distribution:
Tm = P(H1 = m)
» Transition matrix:
Qj = P(Hey1 = | He =)

» Emission model (continuous):

)~<t ‘ Hi=m~ Nd(ﬂma Zm)

» Parameter set:

Figure: Forecasting Market

0=(mQmx) Turbulence Regimes
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An example - Problem Context

Who Ate Ross’s Sandwich?
Dr. Ross Geller, a paleontologist at New
York University, faces a peculiar dilemma.

» Every day, he brings a sandwich and

stores it in the department refrigerator.

» His sandwich frequently disappears
before lunch.

» He records what he can observe:
» 0: Sandwich is safe

» 1: Sandwich is missing

Hachem MADMOUN ICBS
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An example - Emission Probabilities | imosriat cotiege
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Hidden States (Unobserved):

» State 0: Dr. Donald is present —

90% chance sandwich is eaten
State 0 State 1 State 2

» State 1: Dr. Charlie is present —
50% chance sandwich is eaten

> State 2: Neither is present — 0%

chance sandwich is eaten . .

Observation space:

O = {0 : Safe, 1 : Missing} s 1.
Emission matrix O: - (0-9> ( ) (0 )
0.1 09
O=105 05
1.0 0.0
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An example - Initial and Transition Probabilities |

Initial state distribution (uniform):
_ i1l
T 333

Transition matrix Q:

0.8 0.1 0.1
@=101 07 0.2
0.2 0.2 0.6
Hachem MADMOUN ICBS
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I Imperial College
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Programming Session 3: Section 1

» Section 1: Create the Synthetic
Data

» Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

» C(lick here to access ccess the
GitHub Page

Hachem MADMOUN
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https://colab.research.google.com/drive/1wHLzIDWsvotAnTJHfE1TbEepbm630Wo8?usp=sharing
https://colab.research.google.com/drive/1wHLzIDWsvotAnTJHfE1TbEepbm630Wo8?usp=sharing
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/
https://hm-ai.github.io/Systematic_Trading_Strategies_with_Machine_Learning_Algorithms/
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Objective 1: Inference Problem | imosriat cotiege

Business School
Goal: Compute the likelihood of the observed sequence X = (%1, ...,%7)
given the model parameters 6.

We illustrate this in the case of continuous emissions, where each
hidden state emits a multivariate Gaussian.

T-1 T
po($) =D > > [ Qnetess [J N (Rei s T
hr t=1 t=1

h h

This computation is intractable due to the exponential number of hidden
state paths (M T sequences).

Approach: Use a recursive and efficient approach (The Forward
Algorithm).
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Objective 2: The Learning Problem | imosriat cotiege
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Goal: Estimate the model parameters § = (7, Q, 11, X) from a sequence
of observations X.

Approach: Expectation-Maximization (EM) algorithm:

A

6 - logpg(x)
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Objective 3: Predicting the Next Hidden State | imperisicoless

Business School

Goal: Compute the distribution over hidden states at time T + 1 given
past observations and learned parameters.

Approach: Once the model is trained using the EM algorithm, we can
use the filtering probabilities [£( T, A" )]i<w<m (which will be introduced
later) to make the prediction:

p(Hrii=h| X1 =%,...,Xr = %) Vhe [1,M]

@ @ - @ ---------- ﬂ:‘HTJr ; ‘
@ @ o @ :‘:XT-F 1‘

Training period
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Filtering and Smoothing Probabilities | imosriat cotiege
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To solve these problems, we introduce the following probabilities:

» Filtering probabilities: ¢ c R™*M
W(t, h) € [1, T] x [, M],
E(t,h):=p(He=h| Xi,..., %)

» Smoothing probabilities:
» w c RTxM

v(t, h) €1, T] x [1, M],
l/}(tv h) = p(Ht =h ‘ )?la s a)’ZT)
» ¢ c RT—IXMXM
Y(t,h, )€1, T —1] x [1, M]?,
ot h W) = p(Hy = h, Hepr = 0 | X, ..., X7)
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Forward Propagation: Filtering Probabilities | imosriat cotiege
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» Goal: Compute filtering probabilities:

V(t,h) € [1, T] x [1,M], &(t,h) == p(H:=h|X1,..., %)

» We introduce the alpha variables, which correspond to the joint
probability of the observed sequence up to time t and the hidden
state at time t:

Y(t,h) e [1, T] x [1,M], a(t,h) = p(Xi,...,Xe, He = h)

> We also introduce the emission tensor (), a diagonal matrix
encoding the likelihood of the current observation conditioned on
each possible hidden state:

P(;(t | He=1)

Vte 1, T]: I'(t) = e RMxM

P(;(t | He = M)
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Forward Propagation: Filtering Probabilities | imosriat cotiege
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» Vector notation:
ar = (a(t,1),...,a(t, M))T € R
Et = (E(ta 1)7 e af(ta M))T € RM

» Key results: Click here for the detailed calculations

» Forward Propagation: Recursive calculation of « variables:

ap=T(W)r, Vt>2:0:=T()Q ay 1

» Filtering probabilities from alpha:

623

Vte 1, T = —
6[[ ’ ]] gt ]]-,\7;]041'

> Solving Objective 1: | p(X) = 17,7
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https://drive.google.com/file/d/1CWuRLFz9Y5g5WEkfhbkGz88gqUAO4NC2/view?usp=sharing

Backward Propagation: Smoothing Probabilities | meer cotese

Business School

» Goal: Compute smoothing probabilities:

V(ta h) € [[17 T]] X [[17 M]]? ¢(t7 h) = P(Ht =h ‘ Xl:T)
V(tv ha h/) € [[17 T]] X [[17 Mﬂza (b(ta hv h/) = P(Ht = h, Ht+1 = h/ | )?I:T)

» We introduce the beta variables, which represent the likelihood of
future observations given the current state:

V(t,h) e [1, T] x [1,M], B(t, h) = p(Xeyr.7 | He = h)
» Vector / Matrix notation:

ﬂt = (5(1.1 1)7 s 76(1-7 M))T € RM
1/)15 = [w(t, h)]h S RMa ¢t = [¢(t> h7 h/)]h,h’ € RMXM
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Backward Propagation: Smoothing Probabilities | meer cotese

Business School

» Key results: Click here for the detailed calculations

» Backward Propagation: Recursive calculation of 3 variables:

Br=1u, VE<T—1:8=Q(t+1)8i]

» Smoothing probability using o and 3:

at o fBy

]].X—/,OtT

vte 1, T] =

» Joint smoothing probability:

diag(a;) QT (t + 1)diag(Br+1)
]].X;,OZT

Vte[l, T] ¢:=
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Learning the Parameters: EM Algorithm | imosriat cotiege

Business School

Algorithm EM Algorithm

Require: Observations X = {%,..., %7}
Ensure: Optimal parameters 6
1: Initialization: Choose initial parameters (%),
2: while not converged do
3: E-step: Update g to maximize the lower bound with respect
to g
Ge+1 € argmax (L(q, 0¢))

4: M-step: Update 6 to maximize the lower bound with respect
to 0

Oiy1 € arg max (L£(qe+1,0))

5. end while
6: return Optimized parameters 6*
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EM for HMMs: The E—Step I Imperial College

Business School

> We apply EM to estimate parameters of an HMM given
observations Xj.1.

» The E-step computes the expected complete log-likelihood with
respect to the posterior distribution over hidden states:

Epz[log pg(h, X)]

» At iteration /, we decompose the complete log-likelihood as:

log(pgc (h, X)) = log(m +Z log(Q\., +Z log(N (Xe; ), £00Y)
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EM for HMMs: The E—Step I Imperial College

Business School

The expected log-likelihood is computed with respect to the posterior
distribution:

Epx[log(mn )] = ) log(mn)p(Hy = h | X)

Epzllog(Qn,her )] = log(Qnw )p(He = h, Heyy = ' | X)

M= T
M=

i

>
Il

—
X

1

log(NV (Xe; pth, Th))p(He = h | %)

M=

EH‘;([lOg(N(Xt; Hh, s th))] =

>
I
—
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EM for HMMs: The E-Step | Imperial College
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» We use the smoothing probabilities ) and ¢, which are computed
using the Forward-Backward algorithm.

» This allows us to compute the expected complete log-likelihood
w.r.t the posterior distribution:

M T-1

Enjx[log po(h, )] = Z log(mn)(1, h) + log(Qn )o(t, h, ')
t=1 h,h’

n
M1
D_ﬂz

Xt; Hh, zh))¢(t» h)

,.,
Il
—
Il

-

» C(lick here for the detailed calculations
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EM for HMMs: The M-Step |

» Maximize the expected log-likelihood w.r.t. parameters 6.
» Parameter update rules:
= (1, h)
T-1
Q(f+1) _ Et:l ¢(t7 h, h/)

m s (e h)
(1) _ Loy Ut )X
S SR ()
p+) _ Zia e (% = i) = i)
Sl h)

» Click here for the detailed calculations
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Programming Session 3: Section 2

» Section 2: The Learning Problem -
EM Algorithm

» Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

» C(lick here to access ccess the
GitHub Page
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Predicting the Next Hidden State | imosriat cotiege
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> After training the model with the EM algorithm, we want to predict

the distribution over hidden states at the next time step T + 1.

» Objective: Compute

Yhe [L,M], p(Hra=h|Xi=%,.... X7 =%7)

» This is useful for forecasting future regimes such as market
turbulence.

[T I (br)

Training period
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Predicting the Next Hidden State | imosriat cotiege

Business School

» Using the filtering probabilities £( T, -), we derive for all h € [1, M]:

M
p(Hri1=h| Xu7) = ZP (Hr41 = h,Hr = ' | Xv.1)
W=1

M
=Y p(Hrya=h| Hr =H)-p(Hr = K | Xp.7)
h=1 :Qh’h :ﬁ(T,h’)

» The filtering probabilities are computed using the Forward algorithm
introduced earlier.
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Programming Session 3: Section 3

» Section 3: Predicting the next
Hidden State / Next Observation

» Click here to access the
programming session

Solution will be posted tonight on
the GitHub page.

» C(lick here to access ccess the
GitHub Page
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Low Turbulence Model Overview

Summary: The Low Turbulence
Model processes return data to
detect stable market regimes:

» Extract spectral information

(Step a). [3]

» Learn low-dimensional
structure (Step b). [1]

» Forecast regimes with HMMs
(Step ). [4]

The model outputs regime
probabilities used in asset allocation.

See [2] for full methodology and
results.
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Quiz
Time!

Click here to take the quiz
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https://forms.gle/7Fgykv6uvz81STmD6

Thank you for your attention
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