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1 Clustering methods

1.1 Motivation

Given a data set X = (x1, . . . , xn) ∈ Rn×p where n is the number of observation
and p is the number of features, we want to separate these data into K classes
(clusters), i.e.we want to learn :

• the centroid (center) of each cluster {c1, . . . , cK} ∈ Rp×K

• an assignation function Ψ : {x1, . . . , xn} ∈ Rn×p → {1, . . . ,K}, meaning
"sample xi belongs to class Ψ(xi) ".

Figure 1: A simple representation of the situation (n = 25, p = 2,K = 3)

1.2 The K-means Clustering Algorithm
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Definition 1.1. The algorithm 1 is called the K-means algorithm. It’s
an iterative algorithm that provides an assignment function Ψ∗ and the
associated centroids c∗1, . . . , c

∗
K .

Algorithm 1 The K-means Algorithm

Require: A data set X = {x1, . . . , xn} (xi ∈ Rp)
Ensure: An assignment function Ψ∗ and the associated centroids c∗1, . . . , c

∗
K .

1: Initialization: Choose c1, . . . , cK in X at random
2: repeat
3: Assignment step:
4: for i = 1 . . . n do
5: Ψ(xi)← argmink∈{1,...,K} ∥xi − ck∥2
6: end for
7: Re-estimation step:
8: for k = 1 . . .K do
9: cj ← 1

n∑
i=1

1(Ψ(xi)=k)

∑n
i=1 1 (Ψ(xi) = k)xi

10: end for
11: until convergence
12: return Ψ∗, c∗1, . . . , c

∗
K

Definition 1.2. Let Ψ be an assignation function and c = (c1, . . . , cK) be
the corresponding centroids. We define the distortion J(Ψ, c) as follows:

J(Ψ, c) =
1

n

n∑
i=1

∥∥xi − cΨ(xi)

∥∥2

Theorem 1.2.1. The K-means algorithm 1 monotonically decreases the
distortion

Exercise:

For each iteration t of the algorithm 1, we define the distortion at time t as :

J(Ψ(t), c(t)) =
1

n

n∑
i=1

∥∥∥xi − c
(t)

Ψ(t)(xi)

∥∥∥2

Show that for all t:
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J(Ψ(t), c(t)) ≥ J(Ψ(t+1), c(t+1))

Solution:

We have:

Ψt+1(xi) = argmin
k∈{1,...,K}

∥∥∥xi − c
(t)
k

∥∥∥2
So,

J(Ψ(t), c(t)) =
1

n

n∑
i=1

∥∥∥xi − c
(t)

Ψ(t)(xi)

∥∥∥2
≥ 1

n

n∑
i=1

∥∥∥xi − c
(t)

Ψ(t+1)(xi)

∥∥∥2 (1)

=
1

n

n∑
i=1

K∑
k=1

zki

∥∥∥xi − c
(t)
k

∥∥∥2

where z = (zki )(i,k)∈{1,...,n}×{1,...,K} is such that:

∀(i, k) ∈ {1, . . . , n} × {1, . . . ,K} zki = 1
(
Ψ(t+1)(xi) = k

)
We define:

∀c = (c1, . . . , cK) ∈ RK×p L(c) := 1

n

n∑
i=1

K∑
k=1

zki ∥xi − ck∥2

It’s straightforward that:

L(c(t)) = 1

n

n∑
i=1

∥∥∥xi − c
(t)

Ψ(t+1)(xi)

∥∥∥2 (2)
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and

L(c(t+1)) =
1

n

n∑
i=1

∥∥∥xi − c
(t+1)

Ψ(t+1)(xi)

∥∥∥2 (3)

We wish to minimize L w.r.t c.

We have:

∀k ∈ {1, . . . ,K} ∇ckL(c) =
1

n

n∑
i=1

zki ∇ck

(
∥xi − c∥2

)
︸ ︷︷ ︸

g◦f(c)

(4)

where:

f : c 7→ xi − c and g : y 7→ ∥y∥2

We have

d(g ◦ f)a(h) = dgf(a) (dfa(h))

= dgf(a)(−h)
= ⟨2f(a),−h⟩
= ⟨−2(xi − a), h⟩

Thus,

∇ckg ◦ f(c) = −2(xi − c) (5)

From 4 and 5, we conclude that:

∀k ∈ {1, . . . ,K} ∇ckL(c) =
−2
n

n∑
i=1

zki (xi − c)
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Therefore,

∇cL(c) = 0 ⇐⇒ ∀k ∈ {1, . . . ,K} ∇ckL(c) = 0

⇐⇒ ∀k ∈ {1, . . . ,K} ck =

n∑
i=1

zki xi

n∑
i=1

zki

⇐⇒ ∀k ∈ {1, . . . ,K} ck = c
(t+1)
k

⇐⇒ c = c(t+1)

We conclude that

∀c = (c1, . . . , cK) ∈ RK×p L(c) ≥ L(c(t+1))

And therefore:

L(c(t)) ≥ L(c(t+1)) (6)

From equations 1, 2, 3 and 6, we conclude that:

J(Ψ(t), c(t)) ≥ 1

n

n∑
i=1

∥∥∥xi − c
(t+1)

Ψ(t+1)(xi)

∥∥∥2 = J(Ψ(t+1), c(t+1))

Corollary 1.2.2. The K-means algorithm 1 stops after a finite number of
steps.

Proof. The number of possible assignations is finite.

Thus, there exists t such that

J(Ψ(t), c(t)) = J(Ψ(t+1), c(t+1))
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2 Gaussian Mixture Model

2.1 Introduction

Gaussian Mixture Models (GMMs) are a probabilistic model for representing
normally distributed subpopulations within an overall population. Unlike single
Gaussian models, which assume that all observations are drawn from a single
distribution, GMMs consider a mixture of several Gaussian distributions, each
with its own mean and variance, thus providing a more flexible approach to
modeling data distributions. This flexibility makes GMMs particularly useful for
modeling complex data sets with hidden or latent variables—where observations
may originate from one of several unknown subpopulations.

Let’s present a simple example to illustrate what we just said. The probability
density represented on Figure 2 is akin to an average of two Gaussians. Thus,
it is natural to use a mixture model and to introduce an hidden variable z,
following a Bernoulli distribution defining which Gaussian the point is sampled
from.

Figure 2: Average of two probability distributions of two Gaussian for which it
is natural to introduce a mixture model

Thus we have : z ∈ {1, 2} and x | z = i ∼ N (µi,Σi). The density p(x) is a
convex combination of normal density:

p(x) = p(x, z = 1) + p(x, z = 2) = p(x | z = 1)p(z = 1) + p(x | z = 2)p(z = 2)
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It is a mixture model. It represents a simple way to model complicated phenom-
ena.

2.2 Expectation Maximization Algorithm

2.2.1 Introducing the context

The Expectation-Maximization (EM) algorithm is an iterative method used for
obtaining maximum likelihood estimates of parameters within statistical models.
These models are characterized by their reliance on unobserved latent variables
or hidden variables. Latent variables, denoted as z, are not directly observed
but are inferred through the variables that are observed, denoted as x.

Within the context of the EM algorithm, we operate under the following frame-
work:

• Assumption: We consider (x, z) to be random variables, where x repre-
sents the observed data, and z represents the hidden or latent variables
(for example, unknown cluster centers in a clustering problem). The joint
density function of x and z, pθ(x, z), is parameterized by θ, indicating the
model’s parameters.

• Objective: The primary goal is to maximize the marginal likelihood of
the observed data x with respect to the parameters θ, expressed as:

max
θ

pθ(x) =
∑
z

pθ(x, z)

This objective highlights the challenge posed by the presence of latent variables:
maximizing the marginal likelihood is not straightforward due to the summation
over the latent variable z. The summation introduces complexities, making the
problem more challenging than optimizing a likelihood function without latent
variables.

Specifically, taking the logarithm of the marginal likelihood does not lead to a sim-
ple convex optimization problem. The EM algorithm provides a robust method
for addressing this challenge, facilitating the estimation of model parameters in
the presence of latent variables.
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2.2.2 The EM algorithm

The Dataset is composed of the pairs (xi, zi)1≤i≤n where xi is the observed data
and zi is the hidden data.

We make the assumption that the (xi, zi)1≤i≤n are i.i.d.

The aim is to maximize the log likelihood:

log pθ(x) =

n∑
i=1

log
∑
zi

pθ (xi, zi)

We will use the following properties :

Proposition 2.2.1. Jensen Inequality:

1. if f : R→ R is convex and if X is an integrable random variable :

EX(f(X)) ≥ f (EX(X))

2. if f : R → R is strictly convex, we have equality in the previous
inequality if and only if X = constant a.s.

The EM algorithm is an iterative method for finding maximum likelihood esti-
mates of parameters in statistical models, where the models depend on unobserved
latent variables.

Consider for instance n observations x1, . . . , xn and the latent variables associa-
teed with them z1, . . . , zn.

We assume the pairs (xi, zi) to be independent and identically distributed.

For (x, z) = (x1, z1, . . . , xn, zn), the objective is to maximize:

log(p(x; θ)) =

n∑
i=1

log

(∑
zi

p(xi, zi; θ)

)

For each i ∈ {1, . . . , n}, we introduce a function zi 7→ q(zi) such that q(zi) ≥ 0
and

∑
zi
q(zi) = 1 in the expression of the likelihood.
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By conditioning on a latent variable zi and using the Jensen inequality, we get a
lower bound L(q, θ) that depends on both q and θ.

log(p(x; θ)) =

n∑
i=1

log

(∑
zi

p(xi, zi; θ)

)

=

n∑
i=1

log

(∑
zi

q(zi)
p(xi, zi; θ)

q(zi)

)

≥
n∑

i=1

∑
zi

q(zi) log

(
p(xi, zi; θ)

q(zi)

)

=

n∑
i=1

Eq(zi)

[
log

(
pθ(xi, zi)

q(zi)

)]
︸ ︷︷ ︸

L(q(zi),θ)

The EM algorithm can then be summarized as depicted in 2.

Algorithm 2 EM Algorithm

Require: Data set X = {x1, . . . , xn}
Ensure: Optimal θ

1: Initialization: Choose initial parameters θ(0).
2: Set iteration counter i = 0.
3: while not converged do
4: E-step: Update q to maximize the lower bound with respect to q.

qt+1 ∈ argmax
q

(L(q, θt))

5: M-step: Update θ to maximize the lower bound with respect to θ.

θt+1 ∈ argmax
θ

(L(qt+1, θ))

6: Check for convergence criterion (e.g., change in θ below a threshold).
7: i← i+ 1
8: end while
9: return Optimized parameters θ∗.
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Exercise:

Show that the gap beween the marginal log-likelihood and the lower bound
n∑

i=1

L(q(zi), θ) is reduced to 0 when q(zi) = pθ(zi | xi) ∀i ∈ {1, . . . , n}.

pθ(zi | xi) is called the posterior distribution

Solution: Let d = log(pθ(x))−
n∑

i=1

L(q(zi), θ).

We have:

d = log(pθ(x))−
n∑

i=1

L(q(zi), θ)

=

n∑
i=1

(log(pθ(xi))− L(q(zi), θ))

=

n∑
i=1

(∑
zi

q(zi) log(pθ(xi))−
∑
zi

q(zi) log

(
pθ(xi, zi)

q(zi)

))

=

n∑
i=1

∑
zi

q(zi)

(
log(pθ(xi))− log

(
pθ(xi, zi)

q(zi)

))

=

n∑
i=1

∑
zi

q(zi) log

(
q(zi)

pθ(zi|xi)

)

=

n∑
i=1

DKL (q(zi) ∥ pθ(zi|xi))

Therefore,

d = 0 ⇐⇒
n∑

i=1

DKL (q(zi) ∥ pθ(zi|xi))︸ ︷︷ ︸
≥0

⇐⇒ ∀i ∈ {1, . . . , n} DKL (q(zi) ∥ pθ(zi|xi))

⇐⇒ ∀i ∈ {1, . . . , n} q(zi) = pθ(zi|xi)
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Therefore, maximizing the lower bound log (pθ(x)) with respect to q consists in
taking the posterior distributions ∀i ∈ {1, . . . , n} q(zi) = pθ(zi|xi).

Let’s recall the expression of the lower bound:

L(q, θ) =
n∑

i=1

(∑
zi

q(zi) log pθ(xi, zi)−
∑
zi

q(zi) log q(zi)

)

Since
∑

zi
q(zi) log q(zi) doesn’t depend on θ, maximizing the lower bound with

respect to θ is equivalent to maximizing w.r.t θ the expected value of the complete
log likelihood function log (pθt(x, z)).

The final recipe is given in algorithm 3. It consists in the following steps:

1. Compute the probability of Z given X : pθt(z | x) (Corresponding to
qt+1 = argmaxq L (q, θt) )

2. Write the complete loglikelihood lc = log (pθt(x, z)).

3. E-Step: Calculate the expected value of the complete log likelihood
function, with respect to the conditional distribution of Z given X under
the current estimate of the parameter θt : EZ|X (lc).

4. E-Step: Find θt+1 by maximizing L (qt+1, θ) with respect to θ.

Algorithm 3 EM algorithm
Require: Observations x1, . . . , xn

Ensure: Optimal θ

1: Initialize θ(0)

2: while not converged do
3: E-step: q(z) = p(z|x; θ(i−1))
4: M-step: θ(i) = argmaxθ Eq[log p(x, z; θ)]
5: i← i+ 1
6: end while

Remarks:

• It is an ascent algorithm, indeed it goes up in term of likelihood (compare
to before where we were descending along the distortion).

• The sequence of log-likelihoods converges.
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• It does not converge to a global maximum but rather to a local maximum
because we are dealing here with a non-convex problem. An illustration is
given in Figure 3

Figure 3: An illustration of the EM algorithm that converges to a local minimum.

• As it was already the case for K-means, we reiterate the result in order to
be more confident. Then we keep the one with the highest likelihood.

• Because EM gives a local maximum, it is clever to choose a θ0 relatively
close to the final solution. For Gaussian mixtures, it is quite usual to
initiate EM by a K-means.

Exercise:

Suppose we have observations n observations x1, . . . xn in Rp.

We make the assumption of the existence of latent variables z1, . . . , zn from
a multinomial distribution with K possible outcomes.

i.e:

∀i ∈ {1, . . . , n} xi ∈ Rp, zi ∼ M (1, π1, . . . , πK) and (xi | zi = j) ∼
N (µj ,Σj).

Here we have θ = (π, µ,Σ).
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Use the EM algorithm to estimate θ.

Solution:

1. Calculation of the posterior distributions pθ(zi | xi):

We write pθ (xi) :

pθ (xi) =
∑
zi

pθ (xi, zi) =
∑
zi

pθ (xi | zi) pθ (zi)

=
K∑
j=1

pθ (xi | zi = j) pθ (zi = j)

Then we use the Bayes formula to estimate pθ(z | x) :

pθ (zi = j | xi) =
pθ (xi | zi = j) pθ (zi = j)

pθ (xi)

=
πjN (xi | µj ,Σj)∑
j′ πj′N

(
xi | µ′

j ,Σ
′
j

)
= τ ji (θ).

We recall thatN (xi | µ,Σ) = 1

(2π)
p
2 |Σ|

1
2
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)
.

Suppose that we are at the t-th iteration of the algorithm.

2. Complete likelihood

Let’s write the complete likelihood of the problem.
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lc,t = log pθt(x, z) =

n∑
i=1

log pθt (xi, zi)

=

n∑
i=1

log (pθt (zi) pθt (xi | zi))

=

n∑
i=1

log (pθt (zi)) + log (pθt (xi | zi))

=

n∑
i=1

K∑
j=1

zji log (πj,t)

+

n∑
i=1

K∑
j=1

zji log (N (xi | µj,t,Σj,t))

where zji ∈ {0, 1} with zji = 1 if zi = j and 0 otherwise.

3. E-Step In the E-step, we compute the expectation of the complete
log-likelihood with respect to the conditional distribution of the latent
variables Z given the observed data X. This involves replacing the
indicator variables zji with their expected values:

EZ|X

(
zji

)
= pθt(z = j|xi) = τ ji (θt),

where τ ji represents the posterior probability that observation xi

belongs to component j, given the current parameter estimates. By
substituting zji with τ ji , we obtain the expected complete log-likelihood:

EZ|X(lc,t) =

n∑
i=1

K∑
j=1

τ ji log(πj,t) +

n∑
i=1

K∑
j=1

τ ji log (N (xi|µj,t,Σj,t)) .

4. M-Step

For the M-step, we this need to maximize:

n∑
i=1

K∑
j=1

τ ji log (πj,t) +

n∑
i=1

K∑
j=1

τ ji

[
log

(
1

(2π)
p
2

)
+ log

(
1

|Σj,t|
1
2

)

−1

2
(xi − µj,t)

T
Σ−1

j,t (xi − µj,t)

]
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We want to maximize the previous equation with respect to θt =
(Πt, µt,Σt)

As the sum is separated into two terms independent along the variables
we can first maximize with respect to πt :

max
Π

k∑
j=1

n∑
i=1

τ ji log πj ⇒ πj,t+1 =

∑n
i=1 τ

j
i∑n

i=1

∑k
j′=1 τ

j′

i

=
1

n

n∑
i=1

τ ji

We can now maximize with respect to µt and Σt. By computing the
gradient along the µj,t and along the Σj,t, we obtain :

µj,t+1 =

∑
i τ

j
i xi∑

i τ
j
i

Σj,t+1 =

∑
i τ

j
i (xi − µj,t+1) (xi − µj,t+1)

T∑
i τ

j
i

The M-step in the EM algorithm corresponds to the estimation of
means step in K-means. Note that the value of τ ji in the expressions
above are taken for the parameter values of the previous iterate, i.e.,
τ ji = τ ji (θt).

Possible forms for Σj

• isotropic: Σj = σ2
j Id, 1 parameter, the cluster is a sphere.

• diagonal: Σj is a diagonal matrix, d parameters, the cluster is
an ellipse oriented along the axis.

• general: Σj ,
d(d+1)

2 parameters, the cluster is an ellipse.
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