Systematic Trading Strategies with Machine Learning Algorithms

Introduction to Unsupervised Learning Techniques

May 1, 2025

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

Introducing Gaussian Mixture Models

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

Introducing Gaussian Mixture Models

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

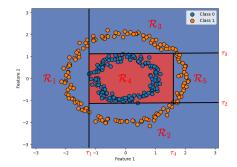
Introducing Gaussian Mixture Models

3 / 44

Decision Trees - A Visual Example

Decision trees create recursive binary partitioning of the feature space.

- Decision tree algorithm:
 - Divides the input space into regions
 - Each split based on a single feature
 - Predictions are made based on region assignment
- ► The example shows classification on ring-shaped data using simple thresholds.



Decision Tree Algorithm - Fundamentals

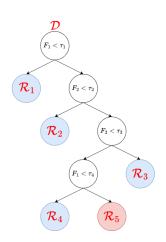
How decision trees map inputs to outputs:

- ▶ A decision tree maps input $F \in \mathbb{R}^d$ to output y using binary decision rules:
 - ► Each node has a splitting rule
 - ► Each leaf node is associated with an output value
- Each splitting rule is of the form:

$$h(F) = \mathbf{1}\{F_j > \tau\}$$

for some dimension j of F and $\tau \in \mathbb{R}$

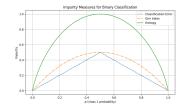
- Using these transition rules, a path to a leaf node gives the prediction
- ▶ The leaves define regions called \mathcal{R}_m



Impurity Measures for Decision Trees

Impurity measure

- For all $F \in \mathcal{R}$, let p_k be empirical fraction labeled k in this region.
- ▶ Measures of impurity for region \mathcal{R} :
 - 1. Classification error: $1 \max_k p_k$
 - 2. Gini index: $\sum_{k=1}^{K} p_k (1 p_k)$
 - 3. Entropy: $-\sum_{k=1}^{K} p_k \log p_k$
- Impurity is maximized when classes are evenly distributed.
- Impurity is minimized when a region contains only one class.



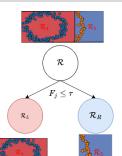
6 / 44

Information Gain and Decision Tree Algorithm

► Information Gain for feature j and threshold T:

$$IG(j,\tau) = I(\mathcal{R}) - \frac{|\mathcal{R}_L|}{|\mathcal{R}|} I(\mathcal{R}_L) - \frac{|\mathcal{R}_R|}{|\mathcal{R}|} I(\mathcal{R}_R)$$

Where:



- ► The DT algorithm:
 - 1. For each feature j and possible threshold τ , compute $IG(j,\tau)$
 - 2. Select feature j^* and threshold τ^* that maximize IG
 - 3. Split node and create child regions \mathcal{R}_L and \mathcal{R}_R
 - 4. Recursively apply to each child node until stopping criteria met

7 / 44

Hachem MADMOUN ICBS May 1, 2025

Decision Tree Algorithm

Algorithm Decision Tree Learning Algorithm

Require: Training data $\{(F_i, y_i)\}_{i=1}^n$, stopping criteria

Ensure: Decision tree T

- 1: Initialize tree with single root node containing all data
- 2: while nodes can be split and stopping criteria not met do
- 3: **for** each leaf node with region \mathcal{R} **do**
- 4: Find (j^*, τ^*) that maximizes:

5:
$$IG(j,\tau) = I(\mathcal{R}) - \frac{|\mathcal{R}_L|}{|\mathcal{R}|}I(\mathcal{R}_L) - \frac{|\mathcal{R}_R|}{|\mathcal{R}|}I(\mathcal{R}_R)$$

6: Where
$$\mathcal{R}_L = \{F \in \mathcal{R} : F_j \leq \tau\}$$
 and $\mathcal{R}_R = \{F \in \mathcal{R} : F_j \leq \tau\}$

$$F_j > \tau$$

7:

- Split node using rule $F_{i^*} > \tau^*$
- 8: end for
- 9: end while
- 10: Assign prediction to each leaf node (majority class)
- 11: return T

8 / 44

May 1, 2025

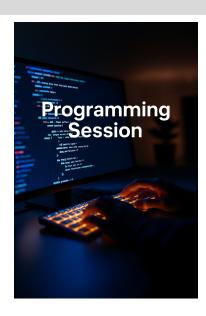
9 / 44

Quiz Time!

Click here to take the quiz

ICBS

Hachem MADMOUN



Optional Programming Session: Implementation of the DT algorithm

Click here to access the programming session

Content:

- Build a Decision Tree classifier from scratch.
- Recursively split data; leaf nodes store class predictions.
- Generate non-linear data and compare Logistic Regression vs.
 Decision Tree decision boundaries.

Hachem MADMOUN ICBS May 1, 2025 10 / 44

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

Introducing Gaussian Mixture Models

Mean Decrease Impurity (MDI)

Feature Importance Analysis in Random Forests

- ▶ Introduced by *Breiman* [2001] for measuring feature importance in tree-based models.
- Based on the accumulated decrease in impurity across all trees.

Pros

- Fast computation (calculated during training)
- Default method in most libraries
- Provides interpretable values (0-1)

Cons

- In-sample measure only.
- Can assign importance to noise.
- Biased toward high cardinality features

MDI Algorithm for Random Forests

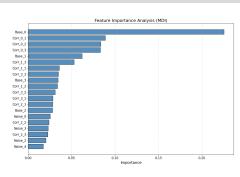
Algorithm Mean Decrease Impurity (MDI) for Random Forests

```
Require: Trained random forest model with T trees
Ensure: Feature importance scores \{MDI_i\}_{i=1}^d
 1: Initialize importance scores: IMP_i = 0 for all features j
 2: for each tree t = 1 to T in the forest do
 3:
        for each internal node n in tree t do
             Identify the feature F_i used for splitting at node n
 4:
             Let w_n be the proportion of samples reaching node n
 5:
             Calculate information gain IG_n(j, \tau_n)
 6:
             Update importance: IMP_i = IMP_i + w_n \cdot IG_n(j, \tau_n)
 7:
        end for
 9: end for
10: Compute \text{MDI}_j = \frac{1}{T} \cdot \frac{\text{IMP}_j}{\sum_{\iota=1}^d \text{IMP}_{\iota}} for all j
11: return \{MDI_i\}_{i=1}^d
```

Programming Session 2

Mean Decrease Impurity

- ► Generated dataset with 1000 samples
- 4 feature clusters with 4 features each:
 - One base feature per cluster (Base_i)
 - Three correlated features per cluster (Corr_i_j)
- ▶ 5 pure noise features (Noise_i)
- Ground truth: Only "Base" features directly influence the target



- MDI Interpretation:
- Importance is split among correlated features in each cluster
- Some noise features receive non-zero importance

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

Introducing Gaussian Mixture Models

Permutation Feature Importance

Out-of-Sample Feature Importance

- Measures the decrease in model performance when a feature is randomly shuffled.
- ► Intuition: If shuffling a feature decreases performance significantly, that feature is important.

Pros

- Out-of-sample: Evaluates on validation data.
- ► Model-agnostic: Works with any machine learning model.
- ► Metric-flexible: Compatible with any performance metric.

Cons

- Computationally expensive.
- Results vary with different random permutations.
- Sensitive to feature correlation.

16 / 44

Permutation Feature Importance Algorithm

Algorithm Permutation Feature Importance (PFI)

Require: Fitted model m, validation data D, repetitions K

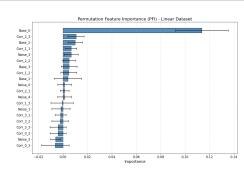
Ensure: Feature importance scores $\{PFI_j\}_{j=1}^d$ with stds $\{\sigma_j\}_{j=1}^d$

- 1: Compute reference score s of model m on data D
- 2: **for** each feature F_j (column of D) **do**
- 3: Initialize array $scores_j$ of length K
- 4: **for** each repetition k in $1, \ldots, K$ **do**
- Randomly shuffle column j of dataset D to generate corrupted version $\tilde{D}_{k,j}$
- 6: Compute score $s_{k,j}$ of model m on corrupted data $\tilde{D}_{k,j}$
- 7: Store in array: $scores_j[k] = s s_{k,j}$
- 8: end for
- 9: Compute mean importance PFI_j and standard deviation σ_j from array $scores_j$
- 10: end for
- 11: **return** $\{PFI_j\}_{j=1}^d$ and $\{\sigma_j\}_{j=1}^d$

Programming Session 2

Permutation Feature Importance Analysis

- Generated dataset with 1000 samples
- 4 feature clusters with 4 features each:
 - One base feature per cluster (Base_i)
 - Three correlated features per cluster (Corr_i_j)
- 5 pure noise features (Noise_i)
- Ground truth: Only "Base" features directly influence the target

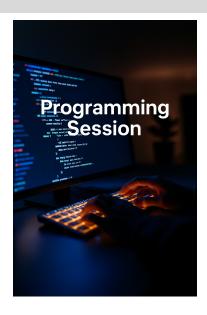


► PFI Interpretation:

- More robust to noise features than MDI
- Importance is underestimated for all correlated features

The Correlation Problem in Feature Importance

- ▶ **Issue:** When features are correlated, permuting one doesn't fully remove its information (it's still available through the other).
- ► This results in smaller performance drops, leading to underestimated importance scores.
- Consequence: correlated features may appear unimportant, even when jointly they matter.
- ▶ Relevance to finance: Feature are often highly correlated, making this a critical issue in systematic trading strategies.
- Mitigation strategies:
 - ► **Clustering:** group correlated features, select representatives, and perform feature importance at the cluster level.
 - ▶ **Dimensionality reduction:** use PCA or autoencoders to extract uncorrelated components before computing importance.



Programming Session 2: Sections 1 and 2

- Section 1: Generating Synthetic Data.
- Section 2: Feature Importance Analysis on Correlated Features.
- Click here to access the programming session

Solution will be posted tonight on the GitHub page.

Click here to access the GitHub Page

Hachem MADMOUN ICBS May 1, 2025 20 / 44

Feedback Poll

Click here to participate in the poll

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

Introducing Gaussian Mixture Models

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

Introducing Gaussian Mixture Models

Motivation for Clustering

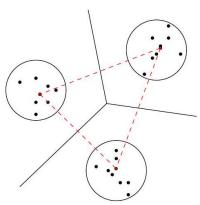
Given a data set

$$X = (x_1, \dots, x_n) \in \mathbb{R}^{n \times p}$$
 where:

- n is the number of observations
- p is the number of features

Goal: Separate data into K clusters by learning:

- Centroids of each cluster $\{c_1, \ldots, c_K\} \in \mathbb{R}^{p \times K}$
- Assignment function $\Psi: \{x_1, \dots, x_n\} \rightarrow \{1, \dots, K\}$
- Meaning: sample x_i belongs to class $\Psi(x_i)$



A simple representation of clustering (n = 25, p = 2, K = 3)

The K-means Clustering Algorithm

Algorithm The K-means Algorithm

Require: A data set $X = \{x_1, \dots, x_n\}$ $(x_i \in \mathbb{R}^p)$

Ensure: An assignment function Ψ^* and the associated centroids c_1^*, \ldots, c_K^* .

- 1: Initialization: Choose c_1, \ldots, c_K in X at random
- 2: repeat
- 3: **for** i = 1 ... n **do**
- 4: $\Psi(x_i) \leftarrow \arg\min_{k \in \{1, \dots, K\}} \|x_i c_k\|^2$
- 5: **end for**
- 6: **for** k = 1 ... K **do**

7:
$$c_k \leftarrow \frac{1}{\sum_{i=1}^n \mathbb{I}(\Psi(x_i) = k)} \sum_{i=1}^n \mathbb{I}(\Psi(x_i) = k) x_i$$

- 8: **end for**
- 9: until convergence
- 10: return $\Psi^*, c_1^*, \ldots, c_K^*$

K-means: Theoretical Properties

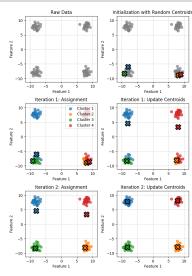
Distortion Measure:

Let Ψ be an assignment function and $c = (c_1, \dots, c_K)$ be centroids.

$$J(\Psi, c) = \frac{1}{n} \sum_{i=1}^{n} ||x_i - c_{\Psi(x_i)}||^2$$

Key Properties:

- K-means monotonically decreases the distortion
- This guarantees convergence to a local minimum
- ► The algorithm stops after a finite number of steps
- Optional: Click here for the proof



K-means visualization

Finding the Optimal Number of Clusters

- Determining the appropriate number of clusters (K) is a critical challenge in cluster analysis
- Several validation metrics help identify the optimal K:
 - ▶ Silhouette Score Measures cohesion and separation
 - Calinski-Harabasz Index Ratio of between-cluster to within-cluster variance
 - ▶ **Davies-Bouldin Index** Ratio of within-cluster scatter to between-cluster separation
- ▶ Approach: Run K-means with different K values, evaluate metrics, select optimal K

Silhouette Score

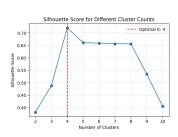
Principle: Measures how well-separated clusters are

For each sample i:

- a(i) = average distance to other points in the same cluster
- b(i) = average distance to points in the nearest different cluster
- Silhouette value $s(i) = \frac{b(i) a(i)}{\max(a(i), b(i))}$
- ► Selection criteria: Higher is better

Interpretation:

- ▶ Range: [-1, 1]
- ► Close to 1: Well-clustered, Close to 0: On cluster boundary, Close to -1: Not Well-clustered



Silhouette score visualization for different values of *K*

Feature Importance Analysis

Decision Trees

In-sample Feature Importance Analysis

Out-of-Sample Feature Importance Analysis

Introducing Unsupervised Learning Algorithms

Clustering methods using the K-means algorithm

Introducing Gaussian Mixture Models

Gaussian Mixture Models (GMMs)

Goal:

 Represent complex probability distributions as a mixture of Gaussians

Key advantages:

- Captures multimodal distributions that single Gaussians cannot model
- Provides probabilistic (soft) assignments to clusters
- Adapts to clusters of varying shapes, sizes, and densities

Applications:

- Market regimes in finance
- Clustering with soft assignments

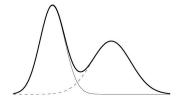


Figure: Density represented as a mixture of two Gaussians

30 / 44

Parameterization

Mathematical Formulation:

- \triangleright *n* observations: $X_1, \ldots, X_n \in \mathbb{R}^d$
- Hidden variables: $Z_1, \ldots, Z_n \in \{1, \ldots, K\}$
- For a mixture of K Gaussians:
 - $ightharpoonup Z_i \sim \mathcal{M}(1, \pi_1, \ldots, \pi_K)$
 - $(X_i|Z_i=k)\sim \mathcal{N}_d(\mu_k,\Sigma_k)$
 - Parameters $\theta = (\pi, \mu, \Sigma)$

Hidden variable Z_i Observed data X_i

Density function (via marginalization):

$$egin{aligned} p_{ heta}(x_i) &= \sum_{z_i} p_{ heta}(x_i, z_i) = \sum_{z_i} p_{ heta}(x_i | z_i) p_{ heta}(z_i) = \sum_{k=1}^K p_{ heta}(x_i | z_i = k) p_{ heta}(z_i = k) \\ &= \sum_{k=1}^K \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k) \end{aligned}$$

The Learning Problem for GMMs

Parameter Estimation:

- Need to learn $\theta = (\pi, \mu, \Sigma)$ using the **Expectation-Maximization** algorithm.
- Introduce a lower bound $\mathcal{L}(q, \theta)$ on the log-likelihood
- ► EM alternates between two steps:
 - ► Maximize wrt *q* (E-step)
 - Maximize wrt θ (M-step)
- Iterative process that guarantees improvement at each step

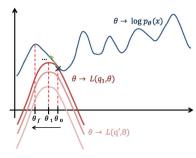


Figure: EM algorithm converging to a local maximum

The EM Algorithm

Lower Bound via Jensen's Inequality:

For *n* observations with latent variables z_1, \ldots, z_n :

$$\log p_{\theta}(x) = \sum_{i=1}^{n} \log \left(\sum_{z_{i}} p_{\theta}(x_{i}, z_{i}) \right)$$

$$= \sum_{i=1}^{n} \log \left(\sum_{z_{i}} q(z_{i}) \frac{p_{\theta}(x_{i}, z_{i})}{q(z_{i})} \right)$$

$$\geq \sum_{i=1}^{n} \sum_{z_{i}} q(z_{i}) \log \left(\frac{p_{\theta}(x_{i}, z_{i})}{q(z_{i})} \right) = \mathcal{L}(q, \theta)$$

Key Idea:

- **E-step:** Maximize $\mathcal{L}(q,\theta)$ with respect to q with fixed θ
- ▶ **M-step:** Maximize $\mathcal{L}(q,\theta)$ with respect to θ with fixed q

The EM Algorithm

Algorithm EM Algorithm

Require: Data set $X = \{x_1, \dots, x_n\}$

Ensure: Optimal θ

1: **Initialization:** Choose initial parameters $\theta^{(0)}$.

2: while not converged do

3: **E-step:** Update q to maximize the lower bound wrt q.

$$q_{t+1} \in rg \max_{q} \left(\mathcal{L}(q, \theta_t) \right)$$

4: **M-step:** Update θ to maximize the lower bound wrt θ .

$$\theta_{t+1} \in \arg\max_{\theta} \left(\mathcal{L}(q_{t+1}, \theta)\right)$$

5: end while

6: **return** Optimized parameters θ^* .

Finding optimal q:

► The gap between log-likelihood and lower bound is:

$$d = \log p_{\theta}(x) - \mathcal{L}(q, \theta)$$
$$= \sum_{i=1}^{n} D_{\mathsf{KL}}(q(z_{i}) \parallel p_{\theta}(z_{i}|x_{i}))$$

- ▶ Gap is minimized when $q(z_i) = p_{\theta}(z_i|x_i)$ for all i
- \triangleright The E-step is equivalent to setting q to be the posterior distribution:

$$q(z_i) = p_{\theta}(z_i|x_i)$$

Optional: Click here for the proof

Key insight: We maximize the lower bound by setting q to match the posterior distributions under current parameter estimates

The M-Step

Rewriting the lower bound:

$$\mathcal{L}(q, \theta) = \sum_{i=1}^{n} \left(\sum_{z_i} q(z_i) \log p_{\theta}(x_i, z_i) - \sum_{z_i} q(z_i) \log q(z_i) \right)$$

For optimization with respect to θ :

- ▶ The second term $\sum_{z_i} q(z_i) \log q(z_i)$ doesn't depend on θ
- Maximizing $\mathcal{L}(q, \theta)$ with respect to θ is equivalent to:

$$\max_{\theta} \sum_{i=1}^{n} \sum_{z_i} q(z_i) \log p_{\theta}(x_i, z_i) = \max_{\theta} \mathbb{E}_{q(z)} [\log p_{\theta}(x, z)]$$

Key insight: The M-step maximizes the expected complete log-likelihood with respect to the posterior distribution

The EM Algorithm (Final Form)

Algorithm EM algorithm

Require: Observations x_1, \ldots, x_n

Ensure: Optimal θ

- 1: Initialize $\theta^{(0)}$
- 2: while not converged do
- 3: **E-step:** $q(z) = p(z|x; \theta^{(i-1)})$
- 4: **M-step:** $\theta^{(i)} = \arg \max_{\theta} \mathbb{E}_q[\log p(x, z; \theta)]$
- 5: $i \leftarrow i + 1$
- 6: end while

Properties:

- ▶ Guaranteed to increase log-likelihood at each iteration
- ► Converges to a local maximum.

Exercise: EM for GMMs

Problem: Use the EM algorithm to estimate parameters of a Gaussian Mixture Model.

- ▶ Given *n* observations $x_1, ..., x_n \in \mathbb{R}^p$
- Assume latent variables z_1, \ldots, z_n with:

$$ightharpoonup z_i \sim \mathcal{M}(1, \pi_1, \dots, \pi_K)$$
 (multinomial with K outcomes)

$$(x_i \mid z_i = j) \sim \mathcal{N}(\mu_j, \Sigma_j)$$
 (conditional Gaussian)

- ▶ Parameters to estimate: $\theta = (\pi, \mu, \Sigma)$ where:
 - $\pi = (\pi_1, \dots, \pi_K)$ are mixture weights
 - $\mu = (\mu_1, \dots, \mu_K)$ are component means
 - $\Sigma = (\Sigma_1, \dots, \Sigma_K)$ are covariance matrices

Task: Derive the E-step and M-step updates for this model.

EM for GMMs

Results of the exercise: Click here for the detailed solution

E-step: Posterior probabilities $\tau_i^j = p_\theta(z_i = j|x_i)$

$$\tau_i^j = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{j'=1}^K \pi_{j'} \mathcal{N}(x_i | \mu_{j'}, \Sigma_{j'})}$$

► M-step: Update parameters

$$\pi_{j,t+1} = \frac{1}{n} \sum_{i=1}^{n} \tau_{i}^{j}$$

$$\mu_{j,t+1} = \frac{\sum_{i} \tau_{i}^{j} x_{i}}{\sum_{i} \tau_{i}^{j}}$$

$$\Sigma_{j,t+1} = \frac{\sum_{i} \tau_{i}^{j} (x_{i} - \mu_{j,t+1}) (x_{i} - \mu_{j,t+1})^{T}}{\sum_{i} \tau_{i}^{j}}$$

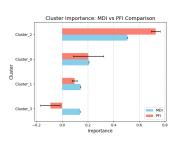
Quiz Time!

Click here to take the quiz

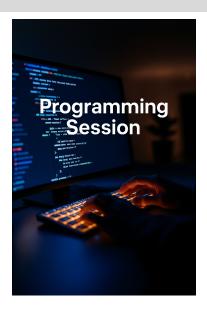
Programming Session 2

Feature Importance Analysis on a cluster level

- Generated dataset with 1000 samples
- ▶ 4 feature clusters with 4 features each:
 - One base feature per cluster (Base_i)
 - Three correlated features per cluster (Corr_i_j)
- 5 pure noise features (Noise_i)
- Ground truth: Only "Base" features directly influence the target



- Interpretation:
- Cluster-level analysis correctly identifies noise clusters with negative importance.
- Feature importance at cluster level prevents underestimation of correlated features.



Programming Session 2: Section 3

- Section 3: Cluster-level Feature Importance Analysis
- Click here to access the programming session

Solution will be posted tonight on the GitHub page.

Click here to access the GitHub Page

Feedback Poll

Click here to participate in the poll

Thank you for your attention