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1 Introducing basic concepts

1.1 Basic Notations and Properties
Convention: Mathematically, the probability that a random variable X takes
the value x is denoted p(X = x). In this document, we simplify this notation
to p(X) to denote a distribution over the random variable X, or p(x) to denote
the distribution evaluated for the particular value x. This simplification applies
similarly for more variables.

1.1.1 Fundamental Rules

Proposition 1.1.1. For two random variables X,Y , the following funda-
mental rules apply:

• Sum Rule:
p(X) =

∑
Y

p(X,Y )

• Product Rule:
p(X,Y ) = p(Y | X)p(X)

1.1.2 Independence

Definition 1.1. Two random variables X and Y are said to be independent
if and only if:

P (X,Y ) = P (X)P (Y )

1.1.3 Conditional Independence

Definition 1.2. Let X,Y, Z be random variables. We define X and Y to
be conditionally independent given Z if and only if:

P (X,Y | Z) = P (X | Z)P (Y | Z)

Proposition 1.1.2. If X and Y are conditionally independent given Z,
then:

P (X | Y, Z) = P (X | Z)
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1.1.4 Independent and Identically Distributed

Definition 1.3. A set of random variables is independent and identically
distributed (i.i.d.) if each random variable has the same probability distribu-
tion as the others and all are mutually independent.

1.1.5 Bayes’ Formula

Proposition 1.1.3. For two random variables X,Y , Bayes’ formula is
given by:

P (X | Y ) =
P (Y | X)P (X)

P (Y )

1.2 Matrix Calculus
In this section we present some basic definitions of matrix calculus and provide
a few examples.

1.2.1 The Gradient

Definition 1.4. Suppose that f : Rm×n → R is a function that takes as
input a matrix A of size m× n and returns a real value. Then the gradient
of f (with respect to A ∈ Rm×n ) is the matrix of partial derivatives, defined
as:

∇Af(A) ∈ Rm×n =


∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn


i.e., an m× n matrix with

(∇Af(A))ij =
∂f(A)

∂Aij

Note that the size of ∇Af(A) is always the same as the size of A. So if, in
particular, A is just a vector x ∈ Rn,
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∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn


It is very important to remember that the gradient of a function is only

defined if the function is real-valued, that is, if it returns a scalar value. We can
not, for example, take the gradient of Ax,A ∈ Rn×n with respect to x, since
this quantity is vector-valued.

Proposition 1.2.1. Properties of partial derivatives

• ∇x(f(x) + g(x)) = ∇xf(x) +∇xg(x).

• For t ∈ R,∇x(tf(x)) = t∇xf(x).

1.2.2 The Hessian

Definition 1.5. Suppose that f : Rn → R is a function that takes a vector
in Rn and returns a real number. Then the Hessian matrix with respect to
x, written ∇2

xf(x) or simply as H is the n× n matrix of partial derivatives,

∇2
xf(x) ∈ Rn×n =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n


In other words, ∇2

xf(x) ∈ Rn×n, with

(
∇2

xf(x)
)
ij
=
∂2f(x)

∂xi∂xj

Note that the Hessian is always symmetric, since

∂2f(x)

∂xi∂xj
=
∂2f(x)

∂xj∂xi

Similar to the gradient, the Hessian is defined only when f(x) is real-valued.
It is natural to think of the gradient as the analogue of the first derivative for
functions of vectors, and the Hessian as the analogue of the second derivative
(and the symbols we use also suggest this relation). Finally, note that while
we can take the gradient with respect to a matrix A ∈ Rn, for the purposes
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of this class we will only consider taking the Hessian with respect to a vector
x ∈ Rn. This is simply a matter of convenience (and the fact that none of the
calculations we do require us to find the Hessian with respect to a matrix), since
the Hessian with respect to a matrix would have to represent all the partial
derivatives ∂2f(A)/ (∂Aij∂Akℓ), and it is rather cumbersome to represent this
as a matrix.

1.2.3 Gradients and Hessians of Quadratic and Linear Functions

Now let’s try to determine the gradient and Hessian matrices for a few simple
functions.

Exercise:
Let b ∈ Rn and f : x 7→ bTx. Caluclate ∇xf(x)

Solution:
For x ∈ Rn, let f(x) = bTx for some known vector b ∈ Rn. Then

f(x) =

n∑
i=1

bixi

so

∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

bixi = bk

From this we can easily see that ∇xb
Tx = b. This should be compared

to the analogous situation in single variable calculus, where ∂/(∂x)ax = a.

Exercise: N ow consider the quadratic function f(x) = xTAx for A ∈ Sn.
Calculate:

∇xf(x) and ∇2
xf(x)

Solution:
Remember that

f(x) =

n∑
i=1

n∑
j=1

Aijxixj

To take the partial derivative, we’ll consider the terms including xk and
x2k factors separately:
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∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj

=
∂

∂xk

∑
i ̸=k

∑
j ̸=k

Aijxixj +
∑
i ̸=k

Aikxixk +
∑
j ̸=k

Akjxkxj +Akkx
2
k


=
∑
i ̸=k

Aikxi +
∑
j ̸=k

Akjxj + 2Akkxk

=

n∑
i=1

Aikxi +

n∑
j=1

Akjxj = 2

n∑
i=1

Akixi,

where the last equality follows since A is symmetric (which we can safely
assume, since it is appearing in a quadratic form). Note that the k th entry
of ∇xf(x) is just the inner product of the k th row of A and x. Therefore,
∇xx

TAx = 2Ax. Again, this should remind you of the analogous fact in
single-variable calculus, that ∂/(∂x)ax2 = 2ax.

Finally, let’s look at the Hessian of the quadratic function f(x) = xTAx
(it should be obvious that the Hessian of a linear function bTx is zero). In
this case,

∂2f(x)

∂xk∂xℓ
=

∂

∂xk

[
∂f(x)

∂xℓ

]
=

∂

∂xk

[
2

n∑
i=1

Aℓixi

]
= 2Aℓk = 2Akℓ

Therefore, it should be clear that ∇2
xx

TAx = 2A, which should be
entirely expected (and again analogous to the single-variable fact that
∂2/

(
∂x2

)
ax2 = 2a

)
.

To recap,

Proposition 1.2.2. We have the following properties:

• ∇x

(
bTx

)
= b

• ∇x

(
xTAx

)
= 2Ax (if A symmetric)

• ∇2
x

(
xTAx

)
= 2A (if A symmetric)

1.3 Review on differentials
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Definition 1.6. Differentiable function. A function f : Rm → Rn is
differentiable at a ∈ Rm iff there exists a linear map ϕa such that:

f(a+ h)− f(a) = ϕa(h) + o(∥h∥)

We write:
∀h ∈ Rm ϕa(h) = dfa(h)

If n = 1 and since Rm is a Hilbert space, we know that there exists g ∈ Rm

such that dfa(h) = ⟨g, h⟩. We call g the gradient of f at a. We write: g = ∇f(a).

Exercise: i f f 7→ a⊤x+ b, calculate ∇f(x)

Solution: if f 7→ a⊤x+ b then we have :

f(x+ h)− f(x) = a⊤h

and thus

∇f(x) = a

Exercise: if fx 7→ x⊤Ax, calculate ∇f(x)

Solution:

f(x+ h)− f(x) = (x+ h)TA(x+ h)− x⊤Ax

= x⊤Ah+ h⊤Ax+ o(∥h∥)

The gradient is then :

∇f(x) =
(
A+A⊤)x

Exercise:
if f : A positive definite 7→ log det(A), calculate ∇f(A)
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Solution:

• Method 1

|A| =
n∑

i=1

(−1)i+jAij

∣∣A\i,\j
∣∣ ( for any j ∈ 1, . . . , n)

So,

∂

∂Akℓ
|A| = ∂

∂Akℓ

n∑
i=1

(−1)i+jAij

∣∣A\i,\j
∣∣

= (−1)k+ℓ
∣∣A\k,\ℓ

∣∣
= (adj(A))ℓk

From this it immediately follows from the properties of the adjoint
that

∇A|A| = (adj(A))T = |A|A−T

Note that we have to restrict the domain of f to be the positive definite
matrices, since this ensures that |A| > 0, so that the log of |A| is a
real number. In this case we can use the chain rule (nothing fancy,
just the ordinary chain rule from single-variable calculus) to see that

∂ log |A|
∂Aij

=
∂ log |A|
∂|A|

∂|A|
∂Aij

=
1

|A|
∂|A|
∂Aij

From this it should be obvious that

∇A log |A| = 1

|A|
∇A|A| = A−1

where we can drop the transpose in the last expression because A
is symmetric. Note the similarity to the single-valued case, where
∂/(∂x) log x = 1/x.

• Method 2

Let’s define H̃ =
(
A− 1

2

)
HA− 1

2 .

H̃ is symmetric, so it can be written as :
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H̃ = UΛU⊤

where U is an orthogonal matrix and Λ = diag (λ1, . . . , λd).

We have:

log(det(A+H)) = log
(
det
(
A

1
2

(
I +A− 1

2HA− 1
2

)
A

1
2

))
= log(det(A)) + log(det(I + H̃))

= log(det(A)) +

n∑
i=1

log(1 + λi)

= log(det(A)) +

n∑
i=1

λi + o(∥H∥)

= log(det(A)) + tr(H̃) + o(∥H∥)

= log(det(A)) + tr
((
A− 1

2

)
HA− 1

2

)
+ o(∥H∥)

= log(det(A)) + tr
((
A−1

)⊤
H
)
+ o(∥H∥)

= log(det(A)) +
〈
A−1, H

〉
+ o(∥H∥)

We deduce the gradient of log(det(A)):

∇ log(det(A)) = A−1

1.4 Review on Lagrange duality
• Lagrangian

Definition 1.7. Consider the following convex optimization problem:

min
x∈X

f(x), subject to Ax = b

where f is a convex function, X ⊂ Rp is a convex set included in the
domain of f , A ∈ Rn×p,b ∈ Rn.

The Lagrangian associated with this optimization problem is defined as

L(x,λ) = f(x) + λT (Ax− b)

The vector λ ∈ Rn is called the Lagrange multiplier vector.
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• Lagrange dual function

Definition 1.8. The Lagrange dual function is defined as

g(λ) = min
x
L(x,λ) (1)

The problem of maximizing g(λ) with respect to λ is known as the
Lagrange dual problem.

• Max-min inequality

Proposition 1.4.1. For any f : Rn × Rm and any w ∈ Rn and
z ∈ Rm, we have

f(w, z) ≤ max
z∈Z

f(w, z) =⇒ min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z)

=⇒ max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z).

The last inequality is known as the max-min inequality.

max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z) (2)

• Duality

Proposition 1.4.2.

max
λ

L(x,λ) =

{
f(x) if Ax = b

+∞ otherwise

Which gives us

min
x
f(x) = min

x
max
λ

L(x,λ) (3)

• Weak and strong duality
Now from 1, 2 and 3 we have

max
λ

g(λ) = max
λ

min
x
L(x,λ) ≤ min

x
max
λ

L(x,λ) = min
x
f(x) (4)

The inequality 4 says that the optimal value d∗ of the Lagrange dual
problem always lower-bounds the optimal value p∗ of the original problem.
This property is called the weak duality.
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If the equality d∗ = p∗ holds, then we say that the strong duality holds.
Strong duality means that the order of the minimization over x and the
maximization over λ can be switched without affecting the result.

• Slater’s constraint qualification lemma.

Lemma 1.4.3. If there exists an x in the relative interior of X∩{Ax =
b} then strong duality holds.

(Note that by definition X is included in the domain of f so that if x ∈ X
then f(x) <∞.)

For a more general problem and more details about Lagrange duality,
please refer to [1] (chapter 5).

2 Parameter estimation by maximum likelihood

2.1 Statistical Models

Definition 2.1. A (parametric) statistical model PΘ is a collection of
probability distributions (or a collection of probability density functions)
defined on the same space and parameterized by parameters θ belonging to a
set Θ ⊂ Rp. Formally:

PΘ = {pθ(·) | θ ∈ Θ}

2.1.1 Bernoulli model

Consider a binary random variable X that can take the value 0 or 1 . If p(X = 1)
is parametrized by θ ∈ [0, 1] :{

P(X = 1) = θ
P(X = 0) = 1− θ

then a probability distribution of the Bernoulli model can be written as

p(X = x; θ) = θx(1− θ)1−x

and we can write

X ∼ Ber(θ).

The Bernoulli model is the collection of these distributions for θ ∈ Θ = [0, 1].
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2.1.2 Binomial model

A binomial random variable Bin(θ,N) is defined as the value of the sum of n
i.i.d. Bernoulli r.v. with parameter θ. The distribution of a binomial random
variable N is

P(N = k) =

(
n
k

)
θk(1− θ)n−k (5)

The set Θ is the same as for the Bernoulli model.

2.1.3 Multinomial model

Consider a discrete random variable C that can take one of K possible values
{1, 2, . . . ,K}. The random variable C can be represented by a K-dimensional
random variable X = (X1, X2, . . . , XK)

T for which the event {C = k} corre-
sponds to the event

{Xk = 1 and Xl = 0,∀l ̸= k} .

If we parametrize P(C = k) by a parameter πk ∈ [0, 1], then by definition we
also have

P (Xk = 1) = πk ∀k = 1, 2, . . . ,K,

with
∑K

k=1 πk = 1. The probability distribution over x = (x1, . . . , xk) can
be written as

p(x;π) =

K∏
k=1

πxk

k (6)

where π = (π1, π2, . . . , πK)
T . We will denote M (1, π1, . . . , πK) such a

discrete distribution. The corresponding set of parameters is

Θ =

{
π ∈ R+ |

K∑
k=1

π = 1

}

Now if we consider n independent observations of a M(1,π) multinomial
random variable X, and we denote by Nk the number of observations for which
xk = 1, then the joint distribution of N1, N2, . . . , NK is called a multinomial
M(n,π) distribution. It takes the form:

p (n1, n2, . . . , nK ;π, n) =
n!

n1!n2! . . . nK !

K∏
k=1

πnk

k

and we can write

(N1, . . . , NK) ∼ M (N, π1, π2, . . . , πK)
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The multinomial M(n,π) is to the M(1,π) distribution, as the binomial
distribution is to the Bernoulli distribution. In the rest of this course, when
we will talk about multinomial distributions, we will always refer to a M(1,π)
distribution.

2.1.4 Gaussian models

The Gaussian distribution is also known as the normal distribution. In the case
of a scalar variable X, the Gaussian distribution can be written in the form

N
(
x;µ, σ2

)
=

1

(2πσ2)
1/2

exp

(
− (x− µ)2

2σ2

)
(7)

where µ is the mean and σ2 is the variance. For a d-dimensional vector x,
the multivariate Gaussian distribution takes the form

N (x | µ,Σ) =
1

(2π)d/2
1

|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(8)

where µ is a d-dimensional vector, Σ is a d× d symmetric positive definite
matrix, and |Σ| denotes the determinant of Σ. It is a well-known property that
the parameter µ is equal to the expectation of X and that the matrix Σ is the
covariance matrix of X, which means that Σij = E [(Xi − µi) (Xj − µj)].

2.2 Maximum Likelihood Estimation

Definition 2.2. Maximum likelihood estimation (MLE) is a method of
estimating the parameters of a statistical model. Suppose we have a sample
x1, x2, . . . , xn of n independent and identically distributed observations, com-
ing from a distribution p (x1, x2, . . . , xn; θ) where θ is an unknown parameter
(both xi and θ can be vectors). As the name suggests, the MLE finds the
parameter θ̂ under which the data x1, x2, . . . , xn are most likely:

θ̂ = argmax
θ

p (x1, x2, . . . , xn; θ)

The probability on the right-hand side in the above equation can be seen
as a function of θ and can be denoted by L(θ) :

L(θ) = p (x1, x2, . . . , xn; θ)

This function is called the likelihood.
As x1, x2, . . . , xn are independent and identically distributed, we have

L(θ) =
n∏

i=1

p (xi; θ)
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In practice it is often more convenient to work with the logarithm of the
likelihood function, called the log-likelihood:

ℓ(θ) = logL(θ) = log

n∏
i=1

p (xi; θ) =

n∑
i=1

log p (xi; θ) (9)

Next, we will apply this method for the models presented previously. We
assume that all the observations are independent and identically distributed in
all of the remainder of this lecture.

2.3 Exercises:

Exercise: MLE for the Bernoulli model

Solution:
Consider n observations x1, x2, . . . , xn of a binary random variable X

following a Bernoulli distribution Ber(θ). From 5 and 9 we have

ℓ(θ) =

n∑
i=1

log p (xi; θ)

=

n∑
i=1

log θxi(1− θ)1−xi

= N log(θ) + (n−N) log(1− θ)

where N =
∑n

i=1 xi.
As ℓ(θ) is strictly concave, it has a unique maximizer, and since the

function is in addition differentiable, its maximizer θ̂ is the zero of its
gradient ∇ℓ(θ) :

∇ℓ(θ) = ∂

∂θ
ℓ(θ) =

N

θ
− n−N

1− θ
.

It is easy to show that ∇ℓ(θ) = 0 ⇐⇒ θ = N
n . Therefore we have

θ̂ =
N

n
=
x1 + x2 + · · ·+ xn

n
.

Exercise:
MLE for the Multinomial model
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Solution: Consider N observations X1, X2, . . . , XN of a discrete ran-
dom variable X following a multinomial distribution M(1,π), where π =

(π1, π2, . . . , πK)
T . We denote xi(i = 1, 2, . . . , N) the K-dimensional vectors

of 0 s and 1 s representing Xi, as presented in Section 2.1.3.
From 9 and 6 we have:

ℓ(π) =

N∑
i=1

log p (xi;π)

=

N∑
i=1

log

(
K∏

k=1

πxik

k

)

=

N∑
i=1

K∑
k=1

xik log πk

=

K∑
k=1

nk log πk

where nk =
∑N

i=1 xik ( nk is therefore the number of observations of
xk = 1 ).

We need to maximize this quantity subject to the constraint:

K∑
k=1

πk = 1

We need to minimize

f(π) = −ℓ(π) = −
K∑

k=1

nk log πk

subject to the constraint 1Tπ = 1.
The Lagrangian of this problem is

L(π, λ) = −
K∑

k=1

nk log πk + λ

(
K∑

k=1

πk − 1

)
Clearly, as nk ≥ 0(k = 1, 2, . . . ,K), f is convex and this problem is

a convex optimization problem. Moreover, it is trivial that there exist
π1, π2, . . . , πK such that πk > 0 ( k =

1, 2, . . . ,K) and
∑K

k=1 πk = 1, so by Slater’s constraint qualification, the
problem has strong duality property. Therefore, we have

min
π
f(π) = max

λ
min
π
L(π, λ)
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As L(π, λ) is convex with respect to π, to find minπ L(π, λ), it suffices
to take derivatives with respect to πk. This yields

∂L

∂πk
= −nk

πk
+ λ = 0, k = 1, 2, . . . ,K.

or

πk =
nk
λ
, k = 1, 2, . . . ,K

Substituting these into the constraint
∑K

k=1 πk = 1 we get
∑K

k=1 nk = λ,
yielding λ = N . From this and (1.24) we get finally

π̂k =
nk
N
, k = 1, 2, . . . ,K

Remark: π̂k is the fraction of the N observations for which xk = 1.

Exercise:
MLE for the univariate Gaussian model

Solution:
Consider n observations x1, x2, . . . , xn of a random variable X following

a Gaussian distribution N
(
µ, σ2

)
. From 9 and 7 we have:

ℓ
(
µ, σ2

)
=

n∑
i=1

log p
(
xi;µ, σ

2
)

=

n∑
i=1

log

[
1

(2πσ2)
1/2

exp

(
− (xi − µ)

2

2σ2

)]

= −n
2
log(2π)− n

2
log
(
σ2
)
− 1

2

n∑
i=1

(xi − µ)
2

σ2

We need to maximize this quantity with respect to µ and σ2. By taking
derivative with respect to µ and then σ2, it is easy to obtain that the pair(
µ̂, σ̂2

)
, defined by

µ̂ =
1

n

n∑
i=1

xi

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)
2

16



is the only stationary point of the likelihood. One can actually check (for
example computing the Hessian w.r.t.

(
µ, σ2

)
that this actually a maximum.

Exercise:
MLE for the multivariate Gaussian model

Solution:
Let X ∈ Rd be a Gaussian random vector, with mean vector µ ∈ Rd and

a covariance matrix Σ ∈ Rd×d (positive definite). We have from 8

p(x | µ,Σ) = 1

(2π)
d
2

1√
detΣ

exp

(
−(x− µ)⊤Σ−1(x− µ)

2

)
Let x1, . . . , xn be a i.i.d. sample.
As shown in 9, the log-likelihood is given by:

ℓ(µ,Σ) = log p (x1, . . . , xn;µ,Σ)

= log

n∏
i=1

p (xi | µ,Σ)

= −

(
nd

2
log(2π) +

n

2
log(detΣ) +

1

2

n∑
i=1

(xi − µ)
⊤
Σ−1 (xi − µ)

)

In this case, one should be careful that these log-likelihoods are not
concave with respect to the pair of parameters (µ,Σ). They are concave
w.r.t. µ when Σ is fixed but they are not even concave with respect to Σ
when µ is fixed.

Remember that the function we want to differentiate is :

ℓ(µ,Σ) = −

(
nd

2
log(2π) +

n

2
log(detΣ) +

1

2

n∑
i=1

(xi − µ)
⊤
Σ−1 (xi − µ)

)

Let us first differentiate ℓ(µ,Σ) w.r.t. µ.
We need to differentiate :

Ψ : µ 7→ (xi − µ)
⊤
Σ−1 (xi − µ)

Which is equal to g ◦ f where :

g : Rd → R
y 7→ y⊤Σ−1y

17



and

f : Rd → Rd

µ 7→ µ− xi

Reminder : Composition of differentials

dΨa(h) = d(g ◦ f)a(h) = (dg)f(a) ◦ dfa(h) = (dg)f(a) (dfa(h))

We have:

∀a, h ∈ Rd f(a+ h) = f(a) + h

Thus;

∀a, h ∈ Rd dfa(h) = h

Moreover, from 1.3:

∀y ∈ Rd ∇g(y) =
(
Σ−1 +

(
Σ−1

)⊤)
y = 2Σ−1y

As a result,

d(g ◦ f)a(h) = (dg)f(a) (h)

= ⟨∇g (f(a)) , h⟩
=
〈
2Σ−1 (a− xi) , h

〉
= ⟨∇ψ(a), h⟩

So,

∇ψ(µ) = 2Σ−1 (µ− xi)

And therefore,

∇µℓ
(
µ,Σ−1

)
= −1

2

n∑
i=1

2Σ−1 (µ− xi)

= Σ−1

(
n∑

i=1

xi − nµ

)
= Σ−1n(x̄− µ)

where x̄ = 1
n

∑n
i=1 xi

The gradient is equal to 0 iff :

18



µ̂ =
1

n

n∑
i=1

xi

Let us now differentiate ℓ w.r.t. Σ−1. Let A = Σ−1. We have :

ℓ(µ,Σ) = −

(
nd

2
log(2π)− n

2
log(detA) +

1

2

n∑
i=1

(xi − µ)
⊤
A (xi − µ)

)

The last term is a real number, so it equal to its trace.
Thus :

ℓ(µ,Σ) = −
(
nd

2
log(2π)− n

2
log(detA) +

n

2
tr(AΣ̃)

)
(10)

where

Σ̃ =
1

n

n∑
i=1

(xi − µ) (xi − µ)
⊤

is the empirical covariance matrix.
Let Φ : A 7→ n

2 tr(AΣ̃).
We have :

∀A,H ∈ Rd×d Φ(A+H)− Φ(A) =
n

2
tr(HΣ̃)

= tr

((n
2
Σ̃
)⊤

H

)
=
〈n
2
Σ̃, H

〉

The gradient of the last term in eq 10 is then :

∇Φ(A) =
n

2
Σ̃

Let Ξ : A 7→ log (det(A)).
From exercise 1.3 we have the gradient of the second term in eq 10:

∇Ξ(A) = A−1

And the gradient of ℓ in 10 w.r.t. A is :

∇A(ℓ) =
n

2
A−1 − n

2
Σ̃

19



It is equal to zero iff :

Σ̂ = Σ̃

when Σ̃ is invertible.
Finally we have shown that the pair

µ̂ = x̄ =
1

n

n∑
i=1

xi and Σ̂ =
1

n

n∑
i=1

(xi − x̄) (xi − x̄)
⊤

is the only stationary point of the likelihood. One can actually check (for
example computing the Hessian w.r.t. (µ,Σ) that this actually a maximum.

3 Linear Regression

3.1 Introduction
When dealing with two random variables X and Y , one can use a generative
model, i.e. which models the joint distribution p(X,Y ), or one can use instead a
conditional model (often considered equivalent to the slightly different concept
of discriminative model), which models the conditional probability of the output,
given the input p(Y | X). The two following models, linear regression or a
logistic regression, are conditional models.

3.2 The Linear Regression model

Exercise:
Let’s assume that Y ∈ R depends linearly on X ∈ Rp. Let w ∈ Rp be a

weighting vector and σ2 > 0. We make the following assumption:

Y | X ∼ N
(
w⊤X,σ2

)
which can be rewritten as

Y = w⊤X + ϵ

with ϵ ∼ N
(
0, σ2

)
. Note that if there is an offset w0 ∈ Rp, that is, if

Y = w⊤X + w0 + ϵ, one can always redefine a weighting vector w̃ ∈ Rp+1

such that

Y = w̃⊤
(
x
1

)
+ ϵ

Let D = {(x1, y1) , · · · , (xn, yn)} be a training set of i.i.d. random
variables. Each yi is a label (a decision) on observation xi.
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We consider the conditional distribution of all outputs given all inputs,
which is a product of terms because of the independence of the pairs forming
the training set:

p
(
y1, · · · , yn | x1, · · · , xn;w, σ2

)
=

n∏
i=1

p
(
yi | xi;w, σ

2
)

The associated log-likelihood has the following expression:

−l
(
w, σ2

)
= −

n∑
i=1

log p (yi | xi) =
n

2
log
(
2πσ2

)
+

1

2

n∑
i=1

(
yi −w⊤xi

)2
σ2

The minimization problem with respect to w can now be reformulated
as:

find ŵ = argmin
w

1

2n

n∑
i=1

(
yi −w⊤xi

)2
Define the so-called design matrix X as

X =

 x⊤
1
...

x⊤
n

 ∈ Rn×p

and denote by y the vector of coordinates (y1, · · · , yn).
The minimization problem over w can be rewritten in a more compact

way as:

find ŵ = argmin
w

1

2n
∥y −Xw∥2.

Solution:
Let f : w 7→ 1

2n∥y −Xw∥2
We have:

f(w) =
1

2n
∥y −Xw∥2

=
1

2n

(
y⊤y − 2w⊤X⊤y +w⊤X⊤Xw

)
f is strictly convex if and only if its Hessian matrix is invertible. This

is never the case when n < p (in this case, we deal with underdetermined
problems). Most of the time, the Hessian matrix is invertible when n ≥ p.
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When this is not the case, we often use the Tikhonov regularization, which
adds a penalization of the ℓ2-norm of w by minimizing f(w) + λ∥w∥2 with
some hyperparameter λ > 0.

The gradient of f is

∇f(w) =
1

n
X⊤(Xw − y) = 0 ⇐⇒ X⊤Xw = X⊤y

The equation X⊤Xw = X⊤y is known as the normal equation.

• If X⊤X is invertible.

Then the optimal weighting vector is

ŵ =
(
X⊤X

)−1
X⊤y = X†y

where X† =
(
X⊤X

)−1
X⊤ is the Moore-Penrose pseudo-inverse of X.

• If X⊤X is not invertible:

The solution is not unique anymore, and for any h ∈ ker(X), ŵ =(
X⊤X

)†
X⊤y + h is an admissible solution.

In that case however it would be necessary to use regularization.
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