
Systematic Trading Strategies with Machine
Learning Algorithms

Graph Representation Learning

June 5, 2025

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Hachem MADMOUN ICBS June 5, 2025 1 / 39

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Hachem MADMOUN ICBS June 5, 2025 2 / 39

Introduction to Graphs

Definition
A graph is defined as:

G = (V ,E , u)

▶ Nodes (Vertices): The set V represents the nodes in
the graph.

▶ Edges: The set E ⊆ V × V represents the connections
(relationships) between the nodes.

▶ Features: Each node can have a feature vector u(v)
representing its attributes.

▶ Labels: Nodes (or edges) can also have labels, which are
used for tasks like classification.

Hachem MADMOUN ICBS June 5, 2025 3 / 39

Example Graph

Example: The graph below has 7 connected nodes
(V = {0, 1, 2, 3, 4, 5, 6}) and their edges (E).

Hachem MADMOUN ICBS June 5, 2025 4 / 39

Example Graph: Node Labels

Example: Nodes in a graph can be associated with labels.

Blue nodes: Label 0 Red nodes: Label 1

Hachem MADMOUN ICBS June 5, 2025 5 / 39

Example Graph: Node Features

Example: Each node in the graph can have associated features. In
this case: Each node has a feature vector of dimension 3.

Hachem MADMOUN ICBS June 5, 2025 6 / 39

Adjacency Matrix

Definition
The adjacency matrix A of a graph G = (V ,E) is a matrix of
size |V | × |V |, where:
▶ A[i][j] = 1 if there is an edge between node i and node j .
▶ A[i][j] = 0 if there is no edge between node i and node j .

Example: A graph and its corresponding adjacency matrix:

Adjacency Matrix:

A =

0 0 1 0 0 1 0
0 0 1 1 0 0 0
1 1 0 0 1 0 0
0 1 0 0 0 0 1
0 0 1 0 0 1 1
1 0 0 0 1 0 0
0 0 0 1 1 0 0

Hachem MADMOUN ICBS June 5, 2025 7 / 39

Weighted Adjacency Matrix

Definition
The adjacency matrix A can be extended to a weighted matrix
W , where:
▶ W [i][j] represents the weight of the edge between node i

and node j .

Example: A graph and its a weighted adjacency matrix:

Weighted Matrix:

W =

0 0 2.1 0 0 1.5 0
0 0 3.4 1.8 0 0 0
2.1 3.4 0 0 2.5 0 0
0 1.8 0 0 0 0 4.2
0 0 2.5 0 0 1.2 3.0
1.5 0 0 0 1.2 0 0
0 0 0 4.2 3.0 0 0

Hachem MADMOUN ICBS June 5, 2025 8 / 39

Applications of Machine Learning on Graphs

Applications: Machine Learning on graphs enables a variety of
tasks, including:

▶ Node Prediction: Predict properties or labels of nodes in a
graph (e.g., user classification in social networks).

▶ Link Prediction: Predict the existence or strength of a
connection between two nodes (e.g., recommendation
systems).

▶ Graph Classification: Assign labels to entire graphs (e.g.,
chemical compound classification).

▶ Clustering: Group nodes into communities or clusters based
on their properties or structure.

Hachem MADMOUN ICBS June 5, 2025 9 / 39

Objective: Node Classification

Objective: The objective of this
course is two-fold:

1. Learning a D-dimensional
representation:
Create embedding vectors
for nodes that capture the
structure of the graph.

2. Node Classification:
Use the learned embeddings
to predict the labels of the
nodes.

Hachem MADMOUN ICBS June 5, 2025 10 / 39

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Hachem MADMOUN ICBS June 5, 2025 11 / 39

Graph Structure-Based Embeddings: Introduction

Objective: We aim to learn a mapping:

f : V → RD

where each node u ∈ V is mapped to a D-dimensional vector
Zu ∈ RD .

▶ In this section, we focus on leveraging the graph’s structure
to generate embedding vectors for nodes.

▶ The embeddings can be used for downstream tasks, such as
node classification or link prediction.

▶ No use of feature vectors: We only use the graph topology
(connections between nodes) to derive the embeddings.

Hachem MADMOUN ICBS June 5, 2025 12 / 39

Graph Structure-Based Embeddings: Objective

Hachem MADMOUN ICBS June 5, 2025 13 / 39

Graph Structure-Based Embeddings: Objective

Hachem MADMOUN ICBS June 5, 2025 14 / 39

Graph Structure-Based Embeddings: Objective

Hachem MADMOUN ICBS June 5, 2025 15 / 39

Deep Walk algorithm

Random Walks:

▶ A random walk is a sequence of steps through the graph,
starting from a given node u, where each step randomly
selects a neighboring node.

▶ The nodes visited during these walks represent the local
neighborhood structure around u, denoted NR(u)

▶ Here is an example of a random walk from node u to node v .

Hachem MADMOUN ICBS June 5, 2025 16 / 39

Determining Neighbors Using Random Walks

Algorithm Fixed-Length Random Walks

Require: Graph G = (V ,E), starting node u, walk length L, num-
ber of walks N

Ensure: NR(u) Multiset of nodes visited during random walks start-
ing from u

1: Initialize an empty multiset of neighbors: neighbors← []
2: for n = 1 to N do ▷ Perform N random walks
3: Initialize current node← u
4: for l = 1 to L do ▷ Walk for L steps
5: Sample a random neighbor v ∈ Neighbors(current node)
6: neighbors.append(v)
7: current node← v
8: end for
9: end for

10: return neighbors

Hachem MADMOUN ICBS June 5, 2025 17 / 39

Introducing Node2Vec: Biased Random Walks

▶ The Node2Vec algorithm modifies traditional random walks
by introducing biases that control how the walk explores the
graph.

▶ This bias allows us to interpolate between two extremes:

1. Local Behavior: Tendency to return to previously visited
nodes, capturing local neighborhood structures. This is
controlled by the return hyperparameter p.

2. Global Behavior: Tendency to explore new, distant nodes,
capturing the global structure of the graph. This is controlled
by the in-out hyperparameter q.

▶ By adjusting p and q, Node2Vec generates embeddings that
can reflect different graph traversal strategies.

▶ This flexibility makes Node2Vec suitable for capturing diverse
graph structures. (See Programming Session 6).

Hachem MADMOUN ICBS June 5, 2025 18 / 39

Introducing Node2Vec: Biased Random Walks

▶ When the walk moves from node u to w , the neighbors of w
are categorized based on their distance to u.

▶ We define the following unnormalized probabilities:

1. Nodes closer to u than w receive an unnormalized probability
of 1

p .

2. Nodes farther from u than w receive an unnormalized
probability of 1

q .

3. Nodes at the same distance as w from u receive an
unnormalized probability of 1.

▶ These unnormalized probabilities are normalized to form a
valid probability distribution, which guides the biased random
walk.

Hachem MADMOUN ICBS June 5, 2025 19 / 39

Introducing Node2Vec: Biased Random Walks

Here is an example of assigning the unnormalized
probabilities:

▶ Starting at node u, the walk reaches node w .

▶ The probabilities assigned to w ’s neighbors depend on their
distance to u, as described in the previous slide.

Hachem MADMOUN ICBS June 5, 2025 20 / 39

Determining Neighbors Using Biased Random Walks

Algorithm Biased Random Walks

Require: Graph G = (V ,E), starting node u, walk length L, num-
ber of walks N, return parameter p, in-out parameter q

Ensure: NR(u): Multiset of nodes visited during biased random
walks starting from u

1: Initialize an empty multiset of neighbors: neighbors← []
2: for n = 1 to N do ▷ Perform N biased random walks
3: Initialize current node← u and prev node← None
4: for l = 1 to L do ▷ Walk for L steps
5: Compute probabilities using prev node and current node
6: Sample the next node v based on the these probabilities
7: neighbors.append(v)
8: Update prev node and current node
9: end for

10: end for
11: return neighbors

Hachem MADMOUN ICBS June 5, 2025 21 / 39

Training the Embedding Vectors

Defining the Loss Function:

▶ Now that we know how to define NR(u), we can derive the
loss function to train the embeddings.

▶ The objective is to minimize the following loss function:

L(θ) = −
∑
u∈V

∑
v∈NR(u)

log

 exp(Z⊤
u Zv)∑

n∈V
exp(Z⊤

u Zn)

Where:

▶ Zi ∈ RD is the embedding vectors for nodes i ∈ V .

▶ θ = {Zi | i ∈ V } represents all the embedding parameters to
be learned.

Hachem MADMOUN ICBS June 5, 2025 22 / 39

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Hachem MADMOUN ICBS June 5, 2025 23 / 39

From Node2Vec to Feature-Aware Embeddings

Node2vec recap:

▶ Node2Vec generates embeddings by combining graph
topology and biased random walks.

▶ Focuses solely on the graph structure, without leveraging
node-specific feature vectors.

Paradigm Shift:

▶ Our new objective is to incorporate both graph structure and
node features into the embeddings.

▶ Instead of manually defining the impact of neighbors (e.g., via
p and q), we aim for the model to learn the importance of
different neighbors.

Hachem MADMOUN ICBS June 5, 2025 24 / 39

Message Passing Framework

Notations:

▶ h
(k)
v : Learned embedding of node v at iteration k .

▶ N (v): Set of neighbors of node v .

At each iteration, embeddings are refined by aggregating
information from the local neighborhood and updating the node’s
representation.

Steps for One Iteration (k):

1. Aggregation: Gather information from neighbors of node v :

a
(k)
v = faggregate

(
{h(k−1)

u | u ∈ N (v)}
)

2. Update: Combine aggregated information and the previous
embedding to compute the new embedding:

h
(k)
v = fupdate(a

(k)
v ,h

(k−1)
v)

Hachem MADMOUN ICBS June 5, 2025 25 / 39

Message Passing Framework: The Algorithm

Algorithm Message Passing Framework

Require: Graph G = (V ,E), node features {xv | v ∈ V }, number
of iterations K , faggregate, fupdate

Ensure: Final node embeddings {h(K)
v | v ∈ V }

1: Initialize embeddings: h
(0)
v ← xv for all v ∈ V

2: for k = 1 to K do
3: for each node v ∈ V do

a
(k)
v ← faggregate

(
{h(k−1)

u | u ∈ N (v)}
)

h
(k)
v ← fupdate(a

(k)
v ,h

(k−1)
v)

4: end for
5: end for
6: return {h(K)

v | v ∈ V }

Hachem MADMOUN ICBS June 5, 2025 26 / 39

An Example: Graph Initialization with Feature Vectors

Hachem MADMOUN ICBS June 5, 2025 27 / 39

An Example: Aggregation Step

Hachem MADMOUN ICBS June 5, 2025 28 / 39

An Example: Update Step

Hachem MADMOUN ICBS June 5, 2025 29 / 39

An Example: Recap of Both Steps

Hachem MADMOUN ICBS June 5, 2025 30 / 39

An Example: Final Embedding Vectors

Hachem MADMOUN ICBS June 5, 2025 31 / 39

GraphSAGE

Aggregation Function (faggregate):

a
(k)
v =

1

deg(v)

∑
u∈N (v)

h
(k−1)
u

Update Function (fupdate):

h
(k)
v = σ

(
W (k) ·

[
h
(k−1)
v ∥ a(k)v

])
Description:

▶ Aggregates the mean of the neighbors’ embeddings.

▶ Updates the embedding with a learned linear transformation
using weights W (k) and a non-linear activation σ (e.g., ReLU).

Hachem MADMOUN ICBS June 5, 2025 32 / 39

Graph Convolutional Networks (GCN)

Aggregation Function (faggregate):

a
(k)
v =

∑
u∈N (v)∪{v}

h
(k−1)
u√

deg(v) · deg(u)

Update Function (fupdate):

h
(k)
v = σ

(
W (k) · a(k)v

)
Description:

▶ Aggregation: Aggregates information from neighbors and the
node itself, normalized by the degree of both nodes.

▶ Update: Applies a linear transformation using W (k), followed
by a non-linear activation σ (e.g., ReLU).

Hachem MADMOUN ICBS June 5, 2025 33 / 39

Graph Attention Networks (GAT) - Aggregation

Aggregation Function (faggregate):

a
(k)
v =

∑
u∈N (v)∪{v}

αvuh
(k−1)
u

Where:

αvu =
exp

(
LeakyReLU

(
a⊤

[
h
(k−1)
v ∥h(k−1)

u

]))
∑

w∈N (v)∪{v} exp
(
LeakyReLU

(
a⊤

[
h
(k−1)
v ∥h(k−1)

w

]))
Description:

▶ Aggregation: Computes a weighted sum of neighbor
embeddings using attention coefficients αvu.

▶ Attention Coefficients αvu: Learn to assign importance to
each neighbor dynamically.

Hachem MADMOUN ICBS June 5, 2025 34 / 39

Graph Attention Networks (GAT) - Update

Update Function (fupdate):

h
(k)
v =

∥∥∥∥K
k=1

σ
(
W

(k)
k a

(k)
v

)
Description:

▶ Multi-Head Attention: Combines results from K
independent attention heads by concatenation (∥).

▶ Non-Linearity: Applies a learned linear transformation W
(k)
k

followed by a non-linear activation σ (e.g., ReLU).

▶ GATs allow each node to focus on the most relevant
neighbors dynamically, enabling better representation learning
for tasks such as node classification or graph-level predictions.

Hachem MADMOUN ICBS June 5, 2025 35 / 39

Unsupervised Training

Objective: Train node embeddings h
(K)
v by leveraging the graph

structure, without requiring labels.

The Loss Function:

L(θ) = −
∑
u∈V

∑
v∈NR(u)

log

 exp(h
(K)⊤
u h

(K)
v)∑

n∈V
exp(h

(K)⊤
u h

(K)
n)

Where:

▶ h
(K)
u : Final embedding of node u after K message-passing

layers.

▶ NR(u): Neighborhood of u defined using some random walk
strategy.

▶ We usually approximate the denominator using negative
sampling.

Hachem MADMOUN ICBS June 5, 2025 36 / 39

Supervised Training: Node Classification

Objective: Predict the label of each node v ∈ Vtrain using the

GNN-generated embeddings h
(K)
v .

The Loss Function (Cross-Entropy):

L = −
∑

v∈Vtrain

C∑
c=1

y cv log ŷ cv

Where:

▶ y cv : Ground-truth label (one-hot encoded) for node v .

▶ ŷ cv = softmax
(
Wouth

(K)
v

)
: Predicted probability of class c,

computed from the node embedding.

Hachem MADMOUN ICBS June 5, 2025 37 / 39

Programming Session: Node Classification

▶ During the programming session, we will work on the Cora
dataset.

▶ The objective will be to build and train a Graph Neural
Network (GNN) for node classification.

Hachem MADMOUN ICBS June 5, 2025 38 / 39

Thank you for your attention

	Graph Terminology and Representation
	Graph Representation Learning: DeepWalk and Node2Vec
	Graph Neural Networks

