Systematic Trading Strategies with Machine Learning Algorithms

Graph Representation Learning

June 5, 2025

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Definition A graph is defined as:

$$G = (V, E, u)$$

- Nodes (Vertices): The set V represents the nodes in the graph.
- ► Edges: The set E ⊆ V × V represents the connections (relationships) between the nodes.
- Features: Each node can have a feature vector u(v) representing its attributes.
- Labels: Nodes (or edges) can also have labels, which are used for tasks like classification.

Example Graph

Example: The graph below has 7 connected nodes $(V = \{0, 1, 2, 3, 4, 5, 6\})$ and their edges (E).

Example Graph: Node Labels

B Imperial College Business School

Example: Nodes in a graph can be associated with labels.

Blue nodes: Label 0 Red nodes: Label 1

Hachem MADMOUN

B Imperial College Business School

Example: Each node in the graph can have associated features. In this case: Each node has a feature vector of dimension 3.

Adjacency Matrix

Definition

The adjacency matrix A of a graph G = (V, E) is a matrix of size $|V| \times |V|$, where:

- A[i][j] = 1 if there is an edge between node *i* and node *j*.
- A[i][j] = 0 if there is no edge between node *i* and node *j*.

Example: A graph and its corresponding adjacency matrix:

Adjacency Matrix:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Weighted Adjacency Matrix

Definition

The adjacency matrix A can be extended to a weighted matrix W, where:

W[i][j] represents the weight of the edge between node i and node j.

Example: A graph and its a weighted adjacency matrix:

Imperial College Business School

Applications: Machine Learning on graphs enables a variety of tasks, including:

- Node Prediction: Predict properties or labels of nodes in a graph (e.g., user classification in social networks).
- Link Prediction: Predict the existence or strength of a connection between two nodes (e.g., recommendation systems).
- Graph Classification: Assign labels to entire graphs (e.g., chemical compound classification).
- Clustering: Group nodes into communities or clusters based on their properties or structure.

Objective: Node Classification

Objective: The objective of this course is two-fold:

1. Learning a *D*-dimensional representation:

Create embedding vectors for nodes that capture the structure of the graph.

2. Node Classification: Use the learned embeddings to predict the labels of the nodes.

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Objective: We aim to learn a mapping:

$$f: V \to \mathbb{R}^D$$

where each node $u \in V$ is mapped to a *D*-dimensional vector $\mathbf{Z}_u \in \mathbb{R}^D$.

- In this section, we focus on leveraging the graph's structure to generate embedding vectors for nodes.
- The embeddings can be used for downstream tasks, such as node classification or link prediction.
- No use of feature vectors: We only use the graph topology (connections between nodes) to derive the embeddings.

Graph Structure-Based Embeddings: Objective

p(v|u)

The probaility of visiting node v on a random walk starting from node u using some walk strategy *R*

Graph Structure-Based Embeddings: Objective

Graph Structure-Based Embeddings: Objective

Random Walks:

- A random walk is a sequence of steps through the graph, starting from a given node u, where each step randomly selects a neighboring node.
- The nodes visited during these walks represent the local neighborhood structure around u, denoted N_R(u)
- Here is an example of a random walk from node u to node v.

Determining Neighbors Using Random Walks

Algorithm Fixed-Length Random Walks

Require: Graph G = (V, E), starting node u, walk length L, number of walks N

Ensure: $N_R(u)$ Multiset of nodes visited during random walks starting from u

- 1: Initialize an empty multiset of neighbors: neighbors \leftarrow []
- 2: for n = 1 to N do \triangleright Perform N random walks
- 3: Initialize current_node $\leftarrow u$
- 4: for l = 1 to L do \triangleright Walk for L steps
- 5: Sample a random neighbor $v \in \text{Neighbors}(\text{current_node})$
- 6: neighbors.append(v)
- 7: $current_node \leftarrow v$
- 8: end for
- 9: end for
- 10: return neighbors

Introducing Node2Vec: Biased Random Walks

- The Node2Vec algorithm modifies traditional random walks by introducing **biases** that control how the walk explores the graph.
- This bias allows us to interpolate between two extremes:
 - 1. **Local Behavior:** Tendency to return to previously visited nodes, capturing local neighborhood structures. This is controlled by the **return hyperparameter** *p*.
 - 2. **Global Behavior:** Tendency to explore new, distant nodes, capturing the global structure of the graph. This is controlled by the **in-out hyperparameter** *q*.
- By adjusting p and q, Node2Vec generates embeddings that can reflect different graph traversal strategies.
- This flexibility makes Node2Vec suitable for capturing diverse graph structures. (See Programming Session 6).

- When the walk moves from node u to w, the neighbors of w are categorized based on their distance to u.
- We define the following **unnormalized probabilities**:
 - 1. Nodes closer to *u* than *w* receive an unnormalized probability of $\frac{1}{p}$.
 - 2. Nodes farther from *u* than *w* receive an unnormalized probability of $\frac{1}{q}$.
 - 3. Nodes at the same distance as *w* from *u* receive an unnormalized probability of 1.
- These unnormalized probabilities are normalized to form a valid probability distribution, which guides the biased random walk.

Introducing Node2Vec: Biased Random Walks

Here is an example of assigning the unnormalized probabilities:

- Starting at node *u*, the walk reaches node *w*.
- The probabilities assigned to w's neighbors depend on their distance to u, as described in the previous slide.

Determining Neighbors Using Biased Random Walk Superial College

Algorithm Biased Random Walks

Require: Graph G = (V, E), starting node u, walk length L, number of walks N, return parameter p, in-out parameter q**Ensure:** $\mathcal{N}_{\mathcal{R}}(u)$: Multiset of nodes visited during biased random walks starting from u1: Initialize an empty multiset of neighbors: neighbors \leftarrow 2: for n = 1 to N do \triangleright Perform *N* biased random walks 3. Initialize current_node $\leftarrow u$ and prev_node \leftarrow None for l = 1 to l do \triangleright Walk for *L* steps 4: Compute probabilities using prev_node and current_node 5: 6: Sample the next node v based on the these probabilities neighbors.append(v) 7: Update prev_node and current_node 8: end for 9:

- 10: end for
- 11: return neighbors

B Imperial College Business School

Defining the Loss Function:

- Now that we know how to define N_R(u), we can derive the loss function to train the embeddings.
- The objective is to minimize the following loss function:

$$\mathcal{L}(\theta) = -\sum_{u \in V} \sum_{v \in \mathcal{N}_{R}(u)} \log \left(\frac{\exp(\mathbf{Z}_{u}^{\top} \mathbf{Z}_{v})}{\sum\limits_{n \in V} \exp(\mathbf{Z}_{u}^{\top} \mathbf{Z}_{n})} \right)$$

Where:

- ▶ $\mathbf{Z}_i \in \mathbb{R}^D$ is the embedding vectors for nodes $i \in V$.
- θ = {Z_i | i ∈ V} represents all the embedding parameters to be learned.

Hachem MADMOUN

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Node2vec recap:

- Node2Vec generates embeddings by combining graph topology and biased random walks.
- Focuses solely on the graph structure, without leveraging node-specific feature vectors.

Paradigm Shift:

- Our new objective is to incorporate both graph structure and node features into the embeddings.
- Instead of manually defining the impact of neighbors (e.g., via p and q), we aim for the model to learn the importance of different neighbors.

ICBS

Message Passing Framework

Notations:

- **h**_v^(k): Learned embedding of node v at iteration k.
- $\mathcal{N}(v)$: Set of neighbors of node v.

At each iteration, embeddings are refined by aggregating information from the local neighborhood and updating the node's representation.

Steps for One Iteration (k):

1. Aggregation: Gather information from neighbors of node v:

$$\mathbf{a}_v^{(k)} = f_{\mathsf{aggregate}}\left(\{\mathbf{h}_u^{(k-1)} \mid u \in \mathcal{N}(v)\}
ight)$$

2. **Update:** Combine aggregated information and the previous embedding to compute the new embedding:

$$\mathbf{h}_{v}^{(k)} = f_{\mathsf{update}}(\mathbf{a}_{v}^{(k)}, \mathbf{h}_{v}^{(k-1)})$$

Hachem MADMOUN

Message Passing Framework: The Algorithm

Algorithm Message Passing Framework

Require: Graph G = (V, E), node features $\{\mathbf{x}_v \mid v \in V\}$, number of iterations K, $f_{aggregate}$, f_{update} **Ensure:** Final node embeddings $\{\mathbf{h}_v^{(K)} \mid v \in V\}$ 1: Initialize embeddings: $\mathbf{h}_v^{(0)} \leftarrow \mathbf{x}_v$ for all $v \in V$ 2: for k = 1 to K do

3: for each node $v \in V$ do

$$\mathbf{a}_{v}^{(k)} \leftarrow \mathit{f}_{\mathsf{aggregate}}\left(\{\mathbf{h}_{u}^{(k-1)} \mid u \in \mathcal{N}(v)\}
ight)$$

$$\mathbf{h}_v^{(k)} \leftarrow f_{\mathsf{update}}(\mathbf{a}_v^{(k)}, \mathbf{h}_v^{(k-1)})$$

- 4: end for
- 5: end for
- 6: return $\{\mathbf{h}_{v}^{(K)} \mid v \in V\}$

An Example: Graph Initialization with Feature Vectories School

An Example: Aggregation Step

An Example: Update Step

An Example: Recap of Both Steps

An Example: Final Embedding Vectors

GraphSAGE

Aggregation Function ($f_{aggregate}$):

$$\mathbf{a}_{v}^{(k)} = \frac{1}{\deg(v)} \sum_{u \in \mathcal{N}(v)} \mathbf{h}_{u}^{(k-1)}$$

Update Function (*f*_{update}):

$$\mathbf{h}_{v}^{(k)} = \sigma \left(W^{(k)} \cdot \left[\mathbf{h}_{v}^{(k-1)} \, \| \, \mathbf{a}_{v}^{(k)} \right] \right)$$

Description:

- Aggregates the mean of the neighbors' embeddings.
- Updates the embedding with a learned linear transformation using weights W^(k) and a non-linear activation σ (e.g., ReLU).

Graph Convolutional Networks (GCN)

Aggregation Function ($f_{aggregate}$):

$$\mathbf{a}_{v}^{(k)} = \sum_{u \in \mathcal{N}(v) \cup \{v\}} \frac{\mathbf{h}_{u}^{(k-1)}}{\sqrt{\deg(v) \cdot \deg(u)}}$$

Update Function (f_{update}) :

$$\mathbf{h}_{v}^{(k)} = \sigma\left(W^{(k)} \cdot \mathbf{a}_{v}^{(k)}\right)$$

Description:

- Aggregation: Aggregates information from neighbors and the node itself, normalized by the degree of both nodes.
- **Update:** Applies a linear transformation using $W^{(k)}$, followed by a non-linear activation σ (e.g., ReLU).

Hachem MADMOUN

Graph Attention Networks (GAT) - Aggregation

Aggregation Function (f_{aggregate}):

$$\mathbf{a}_{v}^{(k)} = \sum_{u \in \mathcal{N}(v) \cup \{v\}} \alpha_{vu} \mathbf{h}_{u}^{(k-1)}$$

$$\alpha_{\textit{vu}} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\mathbf{a}^{\top}\left[\mathbf{h}_{\textit{v}}^{(k-1)}\|\mathbf{h}_{\textit{u}}^{(k-1)}\right]\right)\right)}{\sum_{w\in\mathcal{N}(\textit{v})\cup\{v\}}\exp\left(\mathsf{LeakyReLU}\left(\mathbf{a}^{\top}\left[\mathbf{h}_{\textit{v}}^{(k-1)}\|\mathbf{h}_{\textit{w}}^{(k-1)}\right]\right)\right)}$$

Description:

- Aggregation: Computes a weighted sum of neighbor embeddings using attention coefficients α_{vu}.
- Attention Coefficients α_{vu}: Learn to assign importance to each neighbor dynamically.

Hachem MADMOUN

Graph Attention Networks (GAT) - Update

Update Function (f_{update}) :

$$\mathbf{h}_{v}^{(k)} = \bigg\|_{k=1}^{K} \sigma\left(W_{k}^{(k)} \mathbf{a}_{v}^{(k)}\right)$$

Description:

- Multi-Head Attention: Combines results from K independent attention heads by concatenation (||).
- Non-Linearity: Applies a learned linear transformation $W_k^{(k)}$ followed by a non-linear activation σ (e.g., ReLU).
- GATs allow each node to focus on the most relevant neighbors dynamically, enabling better representation learning for tasks such as node classification or graph-level predictions.

Unsupervised Training

Objective: Train node embeddings $\mathbf{h}_{v}^{(K)}$ by leveraging the graph structure, without requiring labels.

The Loss Function:

$$\mathcal{L}(\theta) = -\sum_{u \in V} \sum_{v \in \mathcal{N}_{R}(u)} \log \left(\frac{\exp(\mathbf{h}_{u}^{(K)^{\top}} \mathbf{h}_{v}^{(K)})}{\sum_{n \in V} \exp(\mathbf{h}_{u}^{(K)^{\top}} \mathbf{h}_{n}^{(K)})} \right)$$

Where:

- h^(K)_u: Final embedding of node u after K message-passing layers.
- *N_R(u)*: Neighborhood of *u* defined using some random walk strategy.
- We usually approximate the denominator using negative sampling.

Hachem MADMOUN

Objective: Predict the label of each node $v \in \mathcal{V}_{\text{train}}$ using the GNN-generated embeddings $\mathbf{h}_{v}^{(\mathcal{K})}$.

The Loss Function (Cross-Entropy):

$$\mathcal{L} = -\sum_{v \in \mathcal{V}_{\mathsf{train}}} \sum_{c=1}^{C} y_v^c \log \hat{y}_v^c$$

Where:

- ▶ y_v^c : Ground-truth label (one-hot encoded) for node v.
- $\hat{y}_{v}^{c} = \operatorname{softmax} \left(W_{out} \mathbf{h}_{v}^{(K)} \right)$: Predicted probability of class c, computed from the node embedding.

Programming Session: Node Classification

- During the programming session, we will work on the Cora dataset.
- The objective will be to build and train a Graph Neural Network (GNN) for node classification.

Thank you for your attention