
Systematic Trading Strategies with Machine
Learning Algorithms

Mock Exam

June 9, 2025

The purpose of this exam is to evaluate your understanding of systematic
trading strategies using machine learning techniques and your ability to apply the
concepts covered in this course. The exam consists of two independent sections:
primary model development using tree-based methods with trend scanning, and
meta-model implementation using Variable Selection Networks for trade filtering.

Instructions:

• Read all questions carefully before answering

• Show all mathematical derivations and algorithmic steps to receive full
credit

• Answer questions in order as some concepts build upon previous ones

• Calculators are permitted for numerical computations

Exam Structure: (Total marks: 100)

• Section 1: Creating a Primary Model using Tree-Based Models
and Trend Scanning (60 marks)

– Exercise 1: Labeling Methodology using Trend Scanning (3 questions)

– Exercise 2: Tree-Based Models for the Primary Model (5 questions)

– Exercise 3: Cluster-Based Feature Importance Analysis (7 questions)

• Section 2: Meta-model using Variable Selection Networks (40
marks)

– Exercise 1: Meta-labeling and Threshold-Based Trade Filtering (3
questions)

– Exercise 2: Variable Selection Networks (7 questions)

Note: Each question is worth 4 marks. Time allowed: 2 hours

Section 1: Creating a Primary Model using tree
based models and Trend Scanning

Introduction

Financial markets exhibit complex temporal patterns that can be systemat-
ically identified and exploited through machine learning techniques. Effective
trading strategies require both accurate signal generation and intelligent trade
filtering to maximize profitability while minimizing risk.

In this section, we explore a comprehensive approach to systematic trading
that consists of three major components:

1. Labeling Methodology: We begin by implementing a trend detection
framework that identifies directional movements in financial time series
using trend scanning techniques.

2. Tree-Based Models for the Primary Model: We develop supervised
learning models using Random Forest algorithms to map features to trend
labels.

3. Cluster-Based Feature Importance Analysis: We implement advanced
feature importance analysis that groups correlated features and provides
robust importance estimates.

The combination of these three components creates a comprehensive framework
for systematic trading strategy development.

Exercise 1 (Labeling Methodology).

Trend scanning is a data-driven labeling method that identifies significant
directional movements in financial time series by fitting linear regression models
over multiple forward-looking horizons. Unlike fixed-horizon approaches, trend
scanning adapts to market dynamics by selecting the optimal look-ahead period
that exhibits the strongest statistical trend.

In this exercise, we implement the trend scanning methodology as covered in
the course. The approach has two main hyperparameters that define the search
space for optimal trend detection:

• Hmin: Minimum look-ahead horizon

• Hmax: Maximum look-ahead horizon

1

We want to label time steps from 1 to T . For a specific time step t, we evaluate
all horizons H ∈ {Hmin, Hmin + 1, . . . ,Hmax} to find the one that maximizes the
statistical significance of the observed trend, as illustrated in Figure 1.

The trend scanning approach works by fitting a linear regression model for each
possible horizon H and selecting the horizon that produces the most statistically
significant trend. Let {Ps}Ts=1 be a sequence of asset prices.

For a specific time step t and horizon H, we have prices from Pt to Pt+H . We
fit the following linear model to the forward-looking price series:

Pt+h = β0 + β1h+ εt+h, h = 0, 1, . . . ,H

where β1 represents the trend coefficient (slope) and εt+h is the error term.
The statistical significance of the trend is measured by the t-statistic:

tβ̂1
=

β̂1

σ̂β̂1

where β̂1 is the estimated slope coefficient and σ̂β̂1
is its standard error.

Figure 1: Trend scanning example: evaluating multiple horizons to find optimal
trend

As illustrated in the figure above, for each time step, we compute t-statistics
across different horizons and select the one that indicates the most significant
trend.

Q1. Based on the trend scanning methodology:

• For each horizon H, we compute a t-statistic tβ̂1
(H). How do

we select the optimal horizon H∗ among all the candidates H ∈
{Hmin, . . . ,Hmax}?

• Once we have identified the optimal horizon H∗, how do we generate
the final trend label yt ∈ {−1,+1} for this time step?

• Optimal horizon selection: The optimal horizon H∗ is selected
by choosing the horizon that maximizes the absolute value of the
t-statistic:

H∗ = arg max
H∈{Hmin,...,Hmax}

|tβ̂1
(H)|

This ensures we select the horizon that exhibits the most statistically
significant trend, regardless of direction.

• Label generation: Once we have identified the optimal horizon H∗,
we generate the trend label based on the sign of the slope coefficient
at that horizon:

yt =

{
+1 if β̂1(H

∗) > 0 (upward trend)
−1 if β̂1(H

∗) ≤ 0 (downward trend)

The label +1 indicates a significant upward trend, while −1 indicates
a significant downward trend.

Q2. Complete the trend scanning algorithm for labeling a single time step t:

Algorithm 1 Trend Scanning for Single Time Step

Require: Price series {Ps}Ts=1, time step t, Hmin, Hmax

Ensure: Trend label yt and optimal horizon H∗
t

1: Initialize tmax = 0, H∗
t = Hmin

2: for H = Hmin to Hmax do
3: [BLANK 1] ▷ Fill in the blank
4: [BLANK 2] ▷ Fill in the blank
5: Calculate t-statistic: tβ̂1

= β̂1

σ̂β̂1

6: if |tβ̂1
| > tmax then

7: tmax = [BLANK 3] ▷ Fill in the blank
8: H∗

t = H
9: end if

10: end for
11: Generate label: yt = [BLANK 4] ▷ Fill in the blank
12: return yt, H∗

t

• BLANK 1: Create regression data: h = [0, 1, 2, . . . ,H]T and
P = [Pt, Pt+1, Pt+2, . . . , Pt+H]T

2

• BLANK 2: Fit linear regression: β̂1, σ̂β̂1
= LinearRegression(h,P)

• BLANK 3: tmax = |tβ̂1
|

• BLANK 4: yt = sign(β̂1(H
∗
t)) where sign(x) = +1 if x > 0, else −1

With this algorithm, we have generated yt associated with time step t.

The trend scanning technique can also be used backward-looking to generate
features at time step t.

Q3. What modifications should be made to the aforementioned algorithm to
generate a new feature that captures the strength of historical trends ending
at time t?

To generate a backward-looking feature that captures historical trend
strength ending at time t, we make the following modifications: Mod-
ified Algorithm Structure:

• Time direction: Instead of looking forward from time t, we look
backward. For horizon H, we use prices from Pt−H to Pt.

• Regression setup: For each horizon H, create:

– h = [0, 1, 2, . . . ,H]T (time indices)
– P = [Pt−H , Pt−H+1, . . . , Pt−1, Pt]

T (historical prices)

• Feature generation: Instead of generating a binary label yt ∈
{−1,+1}, we generate a continuous feature:

TrendStrengtht = tβ̂1
(H∗) · sign(β̂1(H

∗))

This preserves both the magnitude (statistical significance) and direc-
tion of the trend.

This backward-looking feature can then be used as an input to the tree-based
models for predicting future trends.

This process of labeling and feature generation (along with many other indi-
cators) are used over the entire dataset to generate training data {(Xt, yt)} for
t ∈ {1, . . . , T}. The next step is to train tree-based models to map the features
to the targets.

Exercise 2 (Tree-Based Models for the Primary Model).

We will fit a Random Forest algorithm on the training data {(Xt, yt)}Tt=1,
where yt ∈ {−1,+1} represents the trend labels generated from the trend scanning
methodology. The Random Forest consists of multiple decision trees, each trained
on a bootstrap sample of the data.

Q1. Cite and briefly describe three key hyperparameters of a decision tree
algorithm that should be tuned to optimize performance.
Three key hyperparameters for decision tree optimization:

• 1. Maximum Depth (max_depth): Controls the maximum num-
ber of levels in the tree. Deeper trees can model more complex patterns
but may overfit the training data; limiting depth helps reduce overfit-
ting.

• 2. Minimum Samples per Leaf (min_samples_leaf): Speci-
fies the minimum number of samples required to be at a leaf node.
Increasing this value can reduce model complexity and overfitting by
enforcing broader generalizations at the leaves.

• 3. Impurity Criterion (criterion): Defines the function used to
measure the quality of a split, such as Gini impurity or entropy.

Recall that for binary classification with a set S containing classes {−1,+1},
the entropy is defined as:

H(S) = −p+1 log2(p+1)− p−1 log2(p−1)

where p+1 = |{s∈S:class(s)=+1}|
|S| and p−1 = |{s∈S:class(s)=−1}|

|S| are the proportions
of samples in S belonging to classes +1 and −1 respectively.

Consider a parent node containing 100 samples with equal distribution (50
samples with label +1 and 50 samples with label -1). A categorical feature splits
this node based on feature values 0 and 1, resulting in:

Node Feature Value Label +1 Label -1
Parent - 50 50
Left Child 0 50 0
Right Child 1 0 50

Q2. Calculate the Information Gain (IG) for the split described in the example
above using entropy as the impurity measure. Calculate the entropy before
the split, the weighted entropy after the split, and the information gain.

• Entropy before split (Parent node): p+1 = 50
100 = 0.5 and

p−1 = 50
100 = 0.5 H(Parent) = 1

• Entropy after split: Left child: p+1 = 50
50 = 1, p−1 = 0

50 = 0
H(Left) = −1 log2(1)− 0 log2(0) = 0 (using convention 0 log2(0) = 0)
Right child: p+1 = 0

50 = 0, p−1 = 50
50 = 1 H(Right) = −0 log2(0) −

1 log2(1) = 0

• Weighted entropy after split: Hweighted = 50
100 × 0 + 50

100 × 0 = 0

• Information Gain: IG = H(Parent)−Hweighted = 1− 0 = 1

3

Q3. Complete the decision tree learning algorithm for our trend classification
problem:

Algorithm 2 Decision Tree Learning Algorithm

Require: Training data {(Xt, yt)}Tt=1 where yt ∈ {−1,+1}, stopping criteria
Ensure: Decision tree T
1: Initialize tree with single root node containing all data
2: while nodes can be split and stopping criteria not met do
3: for each leaf node with region R do
4: Find (j∗, τ∗) that maximizes: [BLANK 1] ▷ Fill in the blank
5: IG(j, τ) = I(R)− |RL|

|R| I(RL)− |RR|
|R| I(RR)

6: Where RL = {Xt ∈ R : Xt,j ≤ τ} and RR = {Xt ∈ R : Xt,j > τ}
7: Create left child node with samples: [BLANK 2] ▷ Fill in the blank
8: Create right child node with samples: [BLANK 3] ▷ Fill in the blank
9: end for

10: end while
11: Assign prediction to each leaf node: [BLANK 4] ▷ Fill in the blank
12: return T

• BLANK 1: IG(j, τ) where j is feature index and τ is threshold value

• BLANK 2: {(Xt, yt) : Xt ∈ RL}

• BLANK 3: {(Xt, yt) : Xt ∈ RR}

• BLANK 4: ŷ = argmaxc∈{−1,+1}
∑

(Xt,yt)∈leaf I(yt = c) (majority
class)

We will use Random Forest to avoid overfitting, as illustrated in Figure 2.

Figure 2: Random Forest algorithm overview

Q4. What are the two main sources of randomness introduced by Random Forest
to avoid overfitting compared to a single decision tree?

The two main sources of randomness in Random Forest are:

• Bootstrap Sampling (Bagging): Each tree is trained on a different
bootstrap sample of the training data, created by sampling with re-
placement. This ensures that each tree sees a slightly different version
of the dataset, reducing overfitting to specific data points.

• Random Feature Selection: At each split in each tree, only a ran-
dom subset of features (typically

√
D features out of D total features)

is considered for the best split. This prevents trees from always using
the same strong features and increases diversity among trees.

4

Q5. We would like to evaluate the Random Forest algorithm. Cite and briefly
describe two evaluation metrics that don’t depend on a specific threshold
to turn the probability of positive label into hard predictions (-1/+1).

Two threshold-independent evaluation metrics:

• 1. Area Under the ROC Curve (AUC-ROC): Measures the area
under the Receiver Operating Characteristic curve, which plots True
Positive Rate vs. False Positive Rate across all possible thresholds.
AUC ranges from 0 to 1, where 0.5 indicates random performance and
1.0 indicates perfect classification.

• 2. Log Loss (Cross-Entropy Loss): Evaluates the quality of proba-
bilistic predictions by penalizing false classifications with a logarithmic
loss function. It captures how far predicted probabilities are from the
actual labels, with lower values indicating better calibrated and more
confident models. The formula is:

LogLoss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

where yi ∈ {0, 1} is the true label and pi is the predicted probability
of the positive class.

Exercise 3 (Cluster-Based Feature Importance Analysis).

Traditional feature importance methods like Mean Decrease Impurity (MDI)
or Permutation Feature Importance (PFI) can be misleading when features are cor-
related or noisy. To address this limitation, we develop a cluster-based approach
that groups similar features and provides more robust importance estimates.

Let X ∈ RT×D be our feature matrix where T is the number of time steps
and D is the number of features. Each column X:,j represents feature j across
all time steps.

1. Step 1: Initial Feature Importance with MDI

We start by computing the Mean Decrease Impurity (MDI) for each feature
using our trained Random Forest. Let MDIj denote the importance score
for feature j, where:

D∑
j=1

MDIj = 1 and MDIj ≥ 0 ∀j

However, MDI has known limitations that we must address.

Q1. Explain why a noisy feature can have MDIj > 0 even if it doesn’t
bring any information to the prediction task.
A noisy feature can have MDIj > 0 due to the following reasons:

• In-sample evaluation: MDI is computed on the same data used
for training, so it captures reductions in training impurity rather
than true predictive power, making it susceptible to overfitting
artifacts.

• Overfitting bias: Decision trees can overfit to noise, especially
in deep trees. The algorithm will find splits that reduce impu-
rity on the training set even if these splits are based on random
fluctuations rather than true signal.

• High cardinality bias: Features with many unique values (like
continuous noisy features) have more opportunities to create splits
that appear to reduce impurity, giving them artificially high MDI
scores.

2. Step 2: Out-of-Sample Feature Importance

To mitigate MDI’s bias toward noisy features, we employ Permutation Fea-
ture Importance (PFI), which measures the decrease in model performance
when a feature’s values are randomly shuffled.

Let m be our trained model, D = {(Xi, yi)}Ti=1 be our validation dataset,
and s(D) be a performance metric (e.g., accuracy). For feature j, we create
multiple corrupted datasets D̃k,j for k ∈ {1, . . . ,K} by randomly permuting
the j-th feature column across different random seeds.

Q2. Complete the Permutation Feature Importance algorithm:

Algorithm 3 Permutation Feature Importance (PFI)

Require: Fitted model m, validation data D, repetitions K
Ensure: Feature importance scores {PFIj}Dj=1 with standard deviations {σj}Dj=1

1: Compute reference score s0 = s(m,D)
2: for each feature j ∈ {1, . . . , D} do
3: Initialize array scoresj of length K
4: for each repetition k ∈ {1, . . . ,K} do
5: [BLANK 1] ▷ Fill in the blank
6: Compute score sk,j = s(m, D̃k,j)
7: Store in array: scoresj [k] = [BLANK 2] ▷ Fill in the blank
8: end for
9: Compute PFIj = mean(scoresj) and σj = std(scoresj)

10: end for
11: return {PFIj}Dj=1 and {σj}Dj=1

5

• BLANK 1: Create corrupted dataset D̃k,j by randomly permut-
ing feature j in D

• BLANK 2: s0 − sk,j (performance drop due to permutation)

3. Step 3: Addressing Feature Correlation

In our trend scanning framework, many generated features are highly cor-
related (e.g., different moving averages, overlapping technical indicators).
This correlation creates challenges for feature importance analysis.

Let C ∈ RD×D be the Spearman correlation matrix of our features, where
Ci,j represents the correlation between features i and j.

Q3. Explain how feature correlation affects permutation feature importance
analysis through the substitution effect. When one important feature
is permuted, how can correlated features mask the performance drop?
Why does this motivate cluster-based feature importance analysis?
Feature correlation creates the substitution effect in permutation
feature importance:

i. Why the substitution effect causes underestimated impor-
tance:

• Masking effect: When an important feature is permuted
(corrupted), highly correlated features can substitute for it and
maintain model performance. This happens because correlated
features contain similar information and can compensate for
the loss of the permuted feature.

• Underestimated importance: The substitution effect leads
to underestimated importance scores for features that are part
of correlated groups, as the performance drop is smaller than
it would be if all correlated features were permuted simultane-
ously.

ii. Motivation for cluster-based analysis:
• Features within the same cluster share similar information and

should be analyzed together.
• Permuting entire clusters provides more accurate importance

estimates by eliminating substitution effects.
• It identifies redundant features that can be removed without

information loss.
• It provides more interpretable results by grouping related

features.

4. Step 4: Distance Matrix Construction

To cluster correlated features, we transform the correlation matrix into a
distance matrix. We define the distance between features i and j as:

di,j = 1− |Ci,j |

This ensures that highly correlated features (positive or negative correlation)
are close in distance space, while uncorrelated features are far apart.

5. Step 5: Dimensionality Reduction and K-means Clustering

We apply Principal Component Analysis (PCA) to the distance matrix to
reduce dimensionality. Let Z ∈ RD×d be the PCA-transformed data where
d≪ D is chosen to retain at least 95% of the variance.
Next, we determine the optimal number of clusters using silhouette analysis.
For each data point i in cluster Ck, the silhouette coefficient is:

s(i) =
b(i)− a(i)

max(a(i), b(i))

where a(i) is the average intra-cluster distance, and b(i) is the average
distance to the nearest different cluster.

Q4. Complete the algorithm to find the optimal number of clusters:

Algorithm 4 Optimal Cluster Selection using Silhouette Score

Require: PCA-reduced data Z ∈ RD×d, maximum clusters Kmax

Ensure: Optimal number of clusters K∗

1: Initialize silhouette_scores = []
2: for K = 2 to Kmax do
3: [BLANK 1] ▷ Fill in the blank
4: [BLANK 2] ▷ Fill in the blank
5: Append score to silhouette_scores
6: end for
7: K∗ = [BLANK 3] ▷ Fill in the blank
8: return K∗

• BLANK 1: Apply K-means clustering on the PCA-
reduced data Z using the current value of K: clusters =
KMeans(n_clusters=K).fit(Z).

• BLANK 2: Compute the silhouette score for the clustering result
using: score = silhouette_score(Z, clusters.labels_).

6

• BLANK 3: Set K∗ to the number of clusters corre-
sponding to the highest silhouette score using: K∗ =
argmaxi silhouette_scores[i] + 2, since the list index starts
at K = 2.

6. Step 6: Gaussian Mixture Model for Soft Clustering

While K-means provides hard cluster assignments, we use Gaussian Mixture
Models (GMM) to obtain probabilistic cluster memberships. This allows
features to belong to multiple clusters with different probabilities.

Let θ = (π,µ,Σ) be the GMM parameters where:

• π = (π1, . . . , πK) are mixture weights with
∑K

k=1 πk = 1

• µ = (µ1, . . . ,µK) are component means where µk ∈ Rd

• Σ = (Σ1, . . . ,ΣK) are covariance matrices where Σk ∈ Rd×d

Q5. For a GMM with K components modeling d-dimensional data, calcu-
late the total number of parameters. Consider:

• Mixture weights: π1, . . . , πK .
• Component means: µ1, . . . ,µK .
• Full covariance matrices: Σ1, . . . ,ΣK . (symmetric positive defi-

nite)

• Total number of parameters without applying any con-
straints:
– Mixture weights: K parameters
– Component means: K × d parameters
– Covariance matrices: K × d2 parameters
– Total:

K +Kd+Kd2 = K(1 + d+ d2)

• You may also answer by reducing the number of parame-
ters by taking into account the following constraints:
– The mixture weights must sum to 1: this removes 1 degree of

freedom, giving K − 1 free parameters.
– Each covariance matrix is symmetric, so it has only d(d+1)

2
unique entries rather than d2.

– Total number of parameters with constraints:
∗ Mixture weights: K − 1

∗ Component means: K × d

∗ Covariance matrices: K × d(d+1)
2

∗ Total:
(K − 1) +Kd+K · d(d+ 1)

2

The GMM is trained using the Expectation-Maximization (EM) algorithm,
which alternates between computing posterior probabilities (E-step) and
updating parameters (M-step).

Q6. Complete the EM algorithm for GMM parameter estimation. The
posterior probabilities (responsibilities) are given by:

τi,k =
πkN (zi|µk,Σk)∑K
j=1 πjN (zi|µj ,Σj)

where zi is the PCA representation of feature i.

Algorithm 5 EM Algorithm for GMM

Require: PCA data {zi}Di=1, number of components K
Ensure: Parameters θ = (π,µ,Σ)
1: Initialize parameters θ(0)

2: t← 0
3: while not converged do
4: E-step: Compute responsibilities τ

(t)
i,k for all i ∈ {1, . . . , D}, k ∈

{1, . . . ,K}
5: M-step: Update parameters:
6: π

(t+1)
k = [BLANK 1] ▷ Fill in the blank

7: µ
(t+1)
k = [BLANK 2] ▷ Fill in the blank

8: Σ
(t+1)
k = [BLANK 3] ▷ Fill in the blank

9: t← t+ 1
10: end while
11: return θ(t)

• BLANK 1: π
(t+1)
k = 1

D

∑D
i=1 τ

(t)
i,k

• BLANK 2: µ
(t+1)
k =

∑D
i=1 τ

(t)
i,kzi∑D

i=1 τ
(t)
i,k

• BLANK 3: Σ
(t+1)
k =

∑D
i=1 τ

(t)
i,k(zi−µ

(t+1)
k)(zi−µ

(t+1)
k)T∑D

i=1 τ
(t)
i,k

7. Step 7: Hard Cluster Assignment

After training the GMM, we obtain a probability matrix P ∈ RD×K where
Pi,k represents the probability that feature i belongs to cluster k.

7

Q7. Given the soft probability matrix P, derive the hard cluster assignment
for each feature.
The hard cluster assignment for each feature is obtained by selecting
the cluster with the highest posterior probability:

ci = arg max
k∈{1,...,K}

Pi,k, for all i ∈ {1, . . . , D}

Section 2: Meta-model using Variable Selection
Networks

Introduction

While the primary Random Forest model from Section 1 successfully generates
trading signals based on trend scanning labels, not every signal translates into
profitable trades. Market conditions, volatility regimes, and structural breaks can
significantly impact the reliability of these predictions. To enhance the overall
trading strategy performance, we implement a meta-modeling framework that
learns to identify when the primary model’s signals are most likely to succeed.

This section introduces a comprehensive approach to trade filtering through
meta-learning, consisting of three critical components:

1. Meta-labeling Framework: We develop a systematic approach to gener-
ate binary labels that indicate trade profitability using barrier-based exit
strategies adapted to market volatility.

2. Feature Engineering for Meta-learning: We construct a distinct fea-
ture set that captures market microstructure, regime characteristics, and
environmental conditions rather than price patterns used by the primary
model.

3. Variable Selection Networks: We implement advanced neural network
architectures specifically designed for feature selection and binary classifica-
tion in high-dimensional financial data.

The meta-model operates as an intelligent filter that evaluates market condi-
tions and predicts the probability that the primary model’s signal will generate
alpha. This probabilistic framework allows for flexible threshold-based trade
filtering, enabling systematic control over the precision-recall trade-off.

Exercise 4 (Meta-labeling and Threshold-Based Trade Filtering).

The primary Random Forest model generates trend signals st ∈ {−1,+1}
based on the trend scanning methodology. However, these signals exhibit varying

success rates across different market regimes. Our meta-model Mmeta learns to
predict the probability pt = P (Profitable Trade|Market Conditionst) that a trade
initiated at time t will be profitable.

Architecture Overview:

• The Primary Model processes price-based features to generate directional
signals st ∈ {−1,+1}.

• The Meta-model analyzes market environment features to predict signal
reliability pt.

• The Final Decision trades only if pt > τ for threshold τ .

The meta-model framework, illustrated in Figure 3, processes a distinct feature
space to avoid information leakage and redundancy with the primary model.

Figure 3: Metamodel Framework

1. Meta-label Generation using Adaptive Barriers

To train our meta-model, we require binary labels ymeta
t ∈ {0, 1} indicat-

ing trade profitability. We employ an adaptive triple-barrier method that
dynamically adjusts barrier widths based on realized volatility.
For a trade initiated at time t with signal st, we define:

• Entry price: Pt

• Volatility estimate: σ̂t (computed from historical price returns)
• Upper barrier: Pt × (1 + α× σ̂t)

• Lower barrier: Pt × (1− α× σ̂t)

8

• Time barrier: t+Hmax (maximum holding period)

The volatility scaling factor α ensures that profit targets and stop-losses
adapt to market conditions.

Q1. Consider the adaptive barrier method for meta-label generation at
time t.

Algorithm 6 Adaptive Meta-label Generation for Single Time Step

Require: Price series {Ps}t+Hmax
s=t , signal st, volatility estimate σ̂t, scaling factor

α, max holding period Hmax

Ensure: Meta-label ymeta
t

1: Set entry price: Pentry = Pt

2: Set barriers: Pupper = [BLANK 1], Plower = [BLANK 2]
3: Initialize exit_time = t+Hmax, exit_price = Pt+Hmax

4: for h = 1 to Hmax do
5: if Pt+h ≥ Pupper then
6: exit_time = t+ h, exit_price = Pt+h

7: Break
8: else if Pt+h ≤ Plower then
9: exit_time = t+ h, exit_price = Pt+h

10: Break
11: end if
12: end for
13: Compute trade return: Rt = st × exit_price−Pentry

Pentry

14: Generate meta-label: ymeta
t = [BLANK 3] ▷ Fill in the blank

15: return ymeta
t

• BLANK 1: Pupper = Pt × (1 + α× σ̂t)

• BLANK 2: Plower = Pt × (1− α× σ̂t)

• BLANK 3: ymeta
t =

{
1 if Rt > 0

0 if Rt ≤ 0
(binary label based on trade

profitability)

2. Meta-model Feature Engineering

The meta-model requires features that capture market environment and
trading conditions, distinct from the price-based technical indicators used
by the primary model. We construct features across several categories:
volatility regime indicators, latent states from HMMs, and primary model

confidence measures (Random Forest prediction probabilities, feature im-
portance stability). Let Xt ∈ RDmeta denote the meta-feature vector at time
t.

3. Variable Selection Networks for Binary Classification

We implement a Variable Selection Network (VSN) that simultaneously
performs feature selection and binary classification. The VSN architecture
consists of a feature selection layer that learns attention weights for each
feature, and classification layers that process selected features to output
probability pt = P (ymeta

t = 1|Xt).
The VSN produces probabilistic outputs that must be converted to binary
decisions using threshold τ :

ŷmeta
t (τ) =

{
1 if pt > τ

0 if pt ≤ τ

The final trading decision is:

Final Signalt(τ) =

{
st if pt > τ

0 if pt ≤ τ

Different threshold values τ control the trade-off between precision and recall,
effectively filtering different proportions of the primary model’s signals.
We evaluate three trading strategies on a test set of 2000 trading opportu-
nities where the primary model generated signals. The ground truth shows
1200 profitable trades and 800 unprofitable trades. Consider the following
confusion matrices:

• Strategy A (Primary Model Only): Always trade when primary
model signals.

Predicted Trade Predicted No Trade
Actual Profitable 1200 0
Actual Unprofitable 800 0

• Strategy B (Primary + Meta-model, τ1):

Predicted Trade Predicted No Trade
Actual Profitable 1080 120
Actual Unprofitable 600 200

• Strategy C (Primary + Meta-model, τ2):

Predicted Trade Predicted No Trade
Actual Profitable 950 250
Actual Unprofitable 350 450

9

Q2. Calculate the precision and recall for each strategy.

• Strategy A (Primary Model Only):
– Precision = TP

TP+FP = 1200
1200+800 = 1200

2000 = 0.60

– Recall = TP
TP+FN = 1200

1200+0 = 1200
1200 = 1.00

• Strategy B (Primary + Meta-model, τ1):
– Precision = TP

TP+FP = 1080
1080+600 = 1080

1680 = 0.643

– Recall = TP
TP+FN = 1080

1080+120 = 1080
1200 = 0.90

• Strategy C (Primary + Meta-model, τ2):
– Precision = TP

TP+FP = 950
950+350 = 950

1300 = 0.731

– Recall = TP
TP+FN = 950

950+250 = 950
1200 = 0.792

Q3. Using the precision and recall values calculated in Q2:

• Compute the F1 score for each strategy
• Determine which meta-model threshold (τ1 or τ2) provides the

optimal balance between precision and recall.

• F1 Score Calculations: The F1 score is calculated as: F1 =
2× Precision×Recall

Precision+Recall

– Strategy A: F1A = 2× 0.60×1.00
0.60+1.00 = 2× 0.60

1.60 = 0.75

– Strategy B: F1B = 2× 0.643×0.90
0.643+0.90 = 2× 0.579

1.543 = 0.750

– Strategy C: F1C = 2× 0.731×0.792
0.731+0.792 = 2× 0.579

1.523 = 0.760

• Optimal Threshold: Strategy C with threshold τ2 provides the
optimal balance between precision and recall, achieving the highest
F1 score of 0.760. This threshold offers better precision (0.731)
while maintaining reasonable recall (0.792), making it more effec-
tive at filtering unprofitable trades while retaining most profitable
opportunities.

Exercise 5 (Variable Selection Networks).

We now implement a Variable Selection Network (VSN) to predict the meta-
labels ymeta

t ∈ {0, 1} using the meta-features Xt ∈ RD constructed in Exercise 4.
Our training dataset consists of NT samples {(Xi, y

meta
i)}NT

i=1 where each feature
vector Xi contains both numerical and categorical variables.

The feature space is partitioned as D = Dn +Dc, where:

• Dn numerical features: xd
i for d ∈ {1, . . . , Dn}

• Dc categorical features: xd′

i for d′ ∈ {Dn + 1, . . . , Dn +Dc}

• Each categorical variable xd′

i has nd′ possible categories

The VSN architecture transforms each feature (numerical or categorical) into
a De-dimensional embedding vector, then applies gating mechanisms for feature
selection and final prediction.

1. Input Transformation Layer

The first layer processes numerical and categorical features differently:

• Dense Layers for numerical features: xd
i → ξdi ∈ RDe

• Embedding Layers for categorical features: xd′

i → ξd
′

i ∈ RDe

Q1. Consider the embedding layer for categorical features:

• For a categorical variable d′ with nd′ categories embedded into
De dimensions, calculate the total number of parameters in the
embedding layer.

• Explain two key advantages of embedding layers over one-hot
encoding for categorical variables with high cardinality.

• Parameter Count: For a categorical variable d′ with nd′ cate-
gories embedded into De dimensions, the embedding layer contains
exactly nd′×De parameters. Each category is mapped to a unique
De-dimensional vector, requiring a lookup table of size nd′ ×De.

• Advantages over One-Hot Encoding:
– 1. Dimensionality Efficiency: One-hot encoding creates

sparse vectors of size nd′ with only one non-zero element, while
embeddings create dense vectors of size De where De ≪ nd′ for
high-cardinality variables. This significantly reduces memory
usage and computational overhead.

– 2. Learned Representations: Embedding layers learn
meaningful representations that capture semantic relationships
between categories through training, while one-hot encoding
treats all categories as equally distant. This enables the model
to understand that similar categories should have similar em-
beddings, improving generalization and feature interactions.

The Input Transformation layer, illustrated in Figure 4, converts the input
matrix to embedded feature vectors.

10

Figure 4: Input Transformation Layer processing numerical and categorical fea-
tures

After applying the Input Transformation layer to a batch of N samples
with Dn numerical and Dc categorical features, each embedded into De

dimensions.

Q2. What is the shape of the output tensor containing all embedded fea-
tures?

• The output tensor has shape RN×(Dn+Dc)×De , where:

– N is the batch size (number of samples)

– (Dn +Dc) is the total number of features (numerical + cate-
gorical)

– De is the embedding dimension

• Each of the N samples has (Dn +Dc) features, and each feature
is represented as a De-dimensional embedding vector, regardless
of whether it originated from a numerical or categorical variable.

2. Gated Residual Networks (GRN)

Each embedded feature ξdi is processed through a Gated Residual Net-
work, as shown in Figure 5, which applies gating mechanisms and residual
connections to control information flow.

Figure 5: Gated Residual Network architecture with gating mechanism

The GRN transformation produces ξ̃di ∈ RDo for each feature d. These trans-
formed features are then processed through the feature selection mechanism
illustrated in Figure 6.

Figure 6: GRN transformation and feature selection mechanism

Q3. The concatenated feature vector ξi is processed through a GRN fol-
lowed by a Softmax activation to produce attention weights αi:

• What is the purpose of applying the Softmax function to obtain
αi?

• What is the shape of αi and what constraint does the Softmax
impose?

11

• What does each component αd
i represent in the context of feature

importance?

• Purpose of Softmax: The Softmax function normalizes the raw
attention scores to create a probability distribution over features.
This ensures that attention weights are non-negative and sum to
1, creating a valid weighting scheme for feature selection.

• Shape and Constraint: αi ∈ RDn+Dc where each component
αd
i ≥ 0 and

∑Dn+Dc

d=1 αd
i = 1. The Softmax imposes the constraint

that all attention weights are non-negative and sum to unity.
• Feature Importance Interpretation: Each component αd

i rep-
resents the relative importance of feature d for sample i. Higher
values indicate that feature d is more relevant for making predic-
tions about sample i, while values close to zero suggest the feature
should be suppressed. This provides interpretable feature selection
at the instance level.

3. Feature Selection and Final Representation

The final feature representation is computed as a weighted sum:

ξ̃i =

Dn+Dc∑
d=1

αd
i ξ̃

d
i

The complete VSN architecture is illustrated in Figure 7.

Figure 7: Complete Variable Selection Network architecture

Q4. Describe the complete forward propagation from an input batch ma-
trix X ∈ RNb×D to the final representation ξ̃ ∈ RNb×Do . For each
transformation step, specify:

• The operation performed
• The shape of the data after the transformation
• The key parameters involved

Assume a batch size of Nb samples.

i. Step 1 - Input Transformation:
• Operation: Input X ∈ RNb×D is processed through embed-

ding/dense layers. Numerical features use a linear transfor-
mation Wnum ∈ RDe×1; categorical features use embedding
lookup tables.

• Output shape: RNb×(Dn+Dc)×De

• Parameters: Wnum for numerical features, embedding matrices
for categorical features

ii. Step 2 - Individual GRN Processing:
• Operation: Each embedded feature ξdi is processed through

its own GRN: ξ̃di = GRN(ξdi)

• Output shape: RNb×(Dn+Dc)×Do

• Parameters: θGRN (one set per feature)
iii. Step 3 - Attention Weight Calculation:

• Operation: Concatenated features [ξ1i ; . . . ; ξ
Dn+Dc
i] are pro-

cessed through a shared GRN followed by Softmax to compute
attention weights

• Output shape: α ∈ RNb×(Dn+Dc)

• Parameters: shared θGRN for the attention mechanism
iv. Step 4 - Weighted Aggregation:

• Operation: Final representation computed as ξ̃i =∑Dn+Dc

d=1 αd
i ξ̃

d
i

• Output shape: RNb×Do

• Parameters: none (pure aggregation)

4. Binary Classification Layer

Since we have a binary classification problem for predicting meta-labels, we
add a final Dense layer to the VSN architecture.

Q5. Describe the final Dense layer for binary classification:
• What transformation does this layer perform on ξ̃i ∈ RDo?
• How many parameters does this layer contain?
• What is the shape of the final output and what does it represent?
• What activation function should be used and why?

12

• Transformation: The Dense layer performs a linear transforma-
tion pi = σ(wT ξ̃i + b) where w ∈ RDo is the weight vector and
b ∈ R is the bias term.

• Parameter Count: The layer contains Do + 1 parameters: Do

weights in vector w plus 1 bias term b.
• Output Shape: The final output has shape RNb×1, where each

element represents the probability that the corresponding sample
belongs to the positive class (profitable trade).

• Activation Function: Sigmoid activation σ(z) = 1
1+e−z should

be used because it maps real-valued outputs to the interval (0, 1),
making them interpretable as probabilities. This is essential for bi-
nary classification as it ensures outputs represent valid probability
estimates for the positive class.

5. Loss Function and Training

Q6. What loss function should be used to train this VSN model for binary
classification? Provide the mathematical formulation.
Binary Cross-Entropy Loss should be used for training the VSN
model. The mathematical formulation is:

L(θ) = − 1

N

N∑
i=1

[
ymeta
i log(pi) + (1− ymeta

i) log(1− pi)
]

where θ represents all model parameters, ymeta
i ∈ {0, 1} is the true

binary label, pi ∈ (0, 1) is the predicted probability from the sigmoid
output, and N is the number of training samples.

Q7. Complete the Stochastic Gradient Descent training algorithm for the
VSN model:

Algorithm 7 SGD Training for Variable Selection Network
Require: Training data, validation data, learning rate η, batch size B, epochs E
Ensure: Optimal parameters θ∗

1: Initialize parameters θ(0) = [BLANK 1] ▷ Fill in the blank
2: Initialize train_losses = [], val_losses = []
3: t← 0
4: for epoch e = 1 to E do
5: for each batch {(Zi, y

meta
i)}i∈B in training data do

6: Perform forward propagation: {pi}i∈B = VSN({Zi}i∈B;θ
(t))

7: Calculate loss function: LB = 1
|B|

∑
i∈B ℓ(pi, y

meta
i)

8: Update weights: θ(t+1) = [BLANK 2] ▷ Fill in the blank
9: t← t+ 1

10: end for
11: Compute training loss and append to train_losses
12: Compute validation loss and append to val_losses
13: end for
14: Select θ∗ with minimum validation loss
15: return θ∗

• BLANK 1: Initialize weights randomly (optionally using Xavier
or He initialization, e.g., N (0,

√
2/nin))

• BLANK 2: θ(t+1) = θ(t) − η∇θLB (gradient descent update
rule)

13

