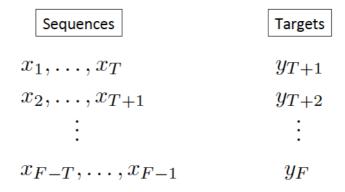

Quiz 6: Introduction to Sequence Models

Introduction to Supervised Learning

*	Ind	icatae	required	duaction
				question


1. Please enter your name: *

Based on some information of the past T data points, we want to predict one of the three following categories for the next return of FB: category 0 if the return is < -1%, category 1 if the return is between -1% and +1% and category 2 if the return is > 1%

Here is the description of the training data:

- At each time step t, we have a feature vector x_t of size D representing the information we have gathered about the FB stock at time t.
- The whole sequence of feature vectors is: x_1,\dots,x_F
- The corresponding sequence of targets is: y_1, \ldots, y_F (where each $y_i \in \{0, 1, 2\}$)
- We have the following sequences of features and the corresponding targets:

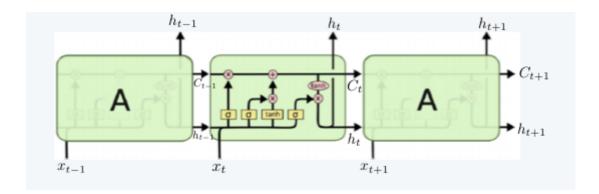
Preprocessing

2. How many sequences do we have in our training data?

1 point

Mark only one oval.

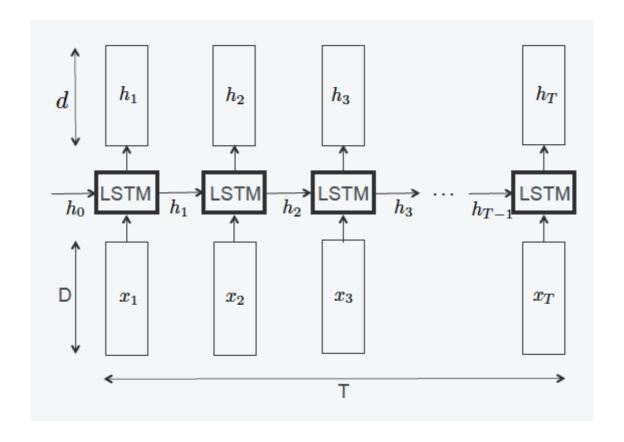
- () F
- F-T-1
- 3. Let N be the number of sequences. What is the shape of our training tensor data? 1 point


Mark only one oval.

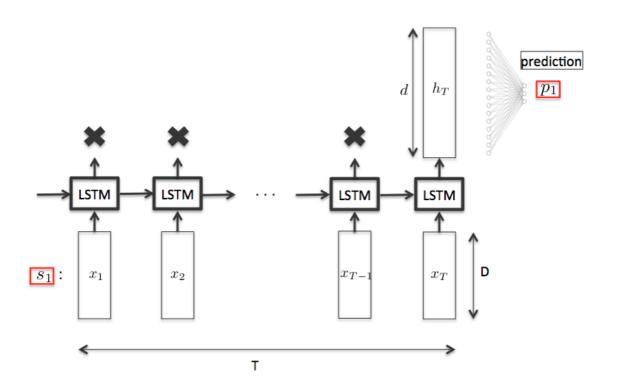
- (N, D)
- (N, T, D)
- () (N, T)

- 4. What is the shape of our training target data after the one-hot encoding of the targets? 1 point *Mark only one oval.*
 - \bigcirc (N, 3)
 - (N,)
 - (N, T, 3)

The LSTM layer


We want to use an LSTM layer to process the sequences. Let d be the output vector size at each time step t.

- 5. Why choosing an LSTM layer over a standard RNN layer? 1 point
- 6. How does the sigmoid activation function protect the cell state? 1 point
- 7. List all the parameters of the LSTM layer that should be learned using Gradient


 1 point
 Descent.

8. For each sequence x_1, ..., x_T, let h_1, ..., h_T represent the output vectors. What information is represented by the vector h_t for each t in {1, ..., T}?

The Supervised Model

Let's describe the forward propagation for the first sequence $s_{-1} = x_{-1}$, ..., x_{-} T. The sequence is fed into an LSTM layer. We only keep the last output vector h_{-} T of size d. The vector h_{-} T is then fed into a Dense layer to output a vector of size 3.

- **9.** Describe the evolution of the shape of data after each layer transformation: The LSTM 1 point layer and the Dense layer.
- 10. What activation function should be used in the Dense layer?
- 11. What loss function should be used?

Programming Session

12.	Did you understand the problem?			
	Mark only one oval.			
	Yes			
	◯ No			
Feel fi	ree to send us an email if you need more support.			
13.	Any comment?			

This content is neither created nor endorsed by Google.

Google Forms