
Imperial College Business School (Due 06/13/2021)

Machine Learning and Finance - Coursework -

Instructors: Arnaud de Servigny & Hachem Madmoun

Instructions:

• The code should be presented as a python file or a jupyter notebook.

• The theoretical questions can be answered in the jupyter notebook or in a separate pdf.

Notations:

• Mn,p(R) is the space of the matrices composed of n rows and p columns.

• In ∈Mn,n(R) is the identity matrix of size n.

• For all z ∈ RD, the L2 norm on RD of z is defined as follows: ||z||22 = zT z

• For all A = [aij ]i,j ∈Mn,p(R) we define the Frobenius norm of A as follows: ||A||2F =
n∑
i=1

p∑
j=1

a2ij

• The gradient of a function f : θ ∈ RD 7→ R at θ ∈ RD is denoted as follows ∇θf(θ) =
(
∂f
∂θ1

(θ), . . . , ∂f
∂θD

(θ)
)

• Convention:

– The rows (Ai)1≤i≤n of a matrix A =

− A1 −
...

...
...

− An −

 ∈Mn,p(R) are considered Mp,1(R) matrices.

– The columns (Bj)1≤j≤p of a matrix B =

 | . . . |
B1 . . . Bp
| . . . |

 ∈ Mn,p(R) are considered Mn,1(R)

matrices.

Presentation of the Coursework:

In this coursework, we are going to implement the GloVe approach. It was introduced by Jeffrey Pennington,
Richard Socher and Christopher D. Manning in the paper: GloVe: Global Vectors for Word Representation.

The coursework is subdivided into three parts:

• In section 1, the objective is to load the data, preprocess it and create the co-occurence matrix (30
marks).

• In section 2, the objective is to train the model by using two different methods: Gradient Descent and
Alternating Least Squares (50 marks).

• In section 3, the objective is to add a penalty term to the loss function as a regularization technique
(20 marks).
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https://nlp.stanford.edu/pubs/glove.pdf
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1 Getting the statistics of the word occurences (30 marks)

1.1 Introducing the problem

The objective of the coursework is to train a model on a corpus of training sentences in order to represent words
in a D-dimensional space. We would like to encode the similarity between the words in the embedding vectors
themselves.

Question 1: Explain why this notion of similarity is not encoded in the one hot vector represen-
tation of words. (2 marks)

Several methods have been used to create word embeddings. The most popular ones rely on the intuition that
a word’s meaning is given by the words that frequently appear close-by.

For instance, we have introduced in Programming Session 6 the word2vec approach, which represents the tokens
as parameters of a shallow neural network predicting a word’s context given the world itself.

Although the shallow window-based model captures linguistic patterns between word vectors and performs well
on the word analogy task (wFrance−wParis ≈ wEngland−wLondon), the model suffers from the disadvantage that
they do not operate directly and the co-occurence statistics.

As explained in Lecture 6, the GloVe method is a popular method used to learn low-dimensional word repre-
sentations by using matrix factorization methods on a matrix of word-word co-occurence statistics.

1.2 Preprocessing the data

The data folder contains a csv file named RedditNews.csv1.

In the RedditNews.csv file are stored historical news headlines from Reddit WorldNews Channel, ranked by
reddit users’ votes, and only the top 25 headlines are considered for a single date.

You will find two colomns:

• The first column is for the ”date”.

• The second column is for the ”News”. As all the news are ranked from top to bottom, there are only 25
lines for each date.

Question 2: Load the data from the csv file, create a list of all the news. (2 marks)

Question 3: Preprocess the data by transforming the list of sentences into a list of sequences of
integers, via a dictionary that maps the words to integers. (8 marks)

Question 4: For each sentence, add a specific index for the token ”< sos >” (start of sequence)
at the beginning of each sequence and an index for the token ”< eos >” (end of sequence) at the
end of each sequence.) (2 marks)

The resulting list of lists of integers is called sequences.

1Source: Sun, J. (2016, August) Daily News for Stock Market Prediction, Version 1. Retrieved [26 may 2020] from
https://www.kaggle.com/aaron7sun/stocknews.

https://colab.research.google.com/drive/1Trobd0idjcnrDCKtmoFUCggfTINz5Pzy?usp=sharing
https://mlfbg.github.io/MachineLearningInFinance/Lectures/Lecture_6.pdf
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1.3 Creating the co-occurence matrix

Let V be the vocabulary size of the training corpus.

In Lecture 6, we have defined the co-occurence matrix X = [Xij ]i,j ∈ MV,V (R), whose entries Xij represent
the number of times word j appears in the context of word i.

Algorithm 1 summarizes the steps involved in estimating the co-occurence matrix from the corpus sequences.

Algorithm 1 Getting the co-occurence matrix

Input: sequences (list of lists of integers), context size
Output: X (the co-occurence matrix)

1: Initialize the matrix X ∈MV,V (R) with zeros.
2: for sequence in sequences do
3: for word w[i] of index i in sequence do
4: for word w[j] of index j in the context of w[i] do
5: X[w[i], w[j]]←− X[w[i], w[j]] + 1
6: end for
7: end for
8: end for

In algorithm 1, each time a word w[j] (of index j in sequence) appears in the context of a center word w[i] (of
index i in sequence), we increase the value of X[w[i], w[j]] by a value of 1 regardless of how close the word w[j]
is to the word w[i].

We would like to take into consideration the distance d(i, j) between the center word w[i] and the context word
w[j] when updating the value X[w[i], w[j]], as shown in figure 1

Figure 1

Question 5: Explain why it makes more sense to use the following update equation for X[w[i], w[j]]
when word w[j] of index j is in the context word w[i] of index i. (2 marks)

X[w[i], w[j]]←− X[w[i], w[j]] +
1

|i− j|

Question 6: Implement the new algorithm 2 to get the co-occurence matrix X. (12 marks)

https://mlfbg.github.io/MachineLearningInFinance/Lectures/Lecture_6.pdf
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Algorithm 2 Getting the co-occurence matrix

Input: sequences (list of lists of integers), context size
Output: X (the co-occurence matrix)

1: Initialize the matrix X ∈MV,V (R) with zeros.
2: for sequence in sequences do
3: for word w[i] of index i in sequence do
4: for word w[j] of index j in the context of w[i] do
5: X[w[i], w[j]]←− X[w[i], w[j]] + 1

|i−j|
6: end for
7: end for
8: end for

Since non-zero values in the matrix X are very large, we apply the logarithm function to all the elements of X
(after adding 1 to all the entries Xij to avoid applying the logarithm on zero values). The resulting matrix is
still a sparse matrix. We will denote it logX.

Question 7: Create the matrix logX. (2 marks)

2 Training the weighted least squares regression model (50 marks)

2.1 Introducing the cost function

The logarithm of the co-occurence matrix logX has been defined in the previous section. The objective of this
section is to approximate logX using a factorization method as follows:

∀(i, j) ∈ {1, . . . , V }2 logXij ≈WT
i W̃j + bi + b̃j

The parameters of the regression model are:

• A first embedding matrix and a bias term associated with it:

W =

− W1 −
...

...
...

− WV −

 ∈MV,D(R), b =

b1...
bV

 ∈ RV

• A second embedding matrix and a bias term associated with it:

W̃ =

− W̃1 −
...

...
...

− W̃V −

 ∈MV,D(R), b̃ =

 b̃1...
b̃V

 ∈ RV

Instead of equal-weighting all the co-occurences, we introduce a weighting function f(Xij) defined as follows:

∀x ∈ R+ f(x) =

{
(x/xmax)α if x < xmax

1 otherwise

The function f is represented in figure 2 with xmax = 100 and α = 0.75
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Figure 2: Weighting Function

Question 8: Create a matrix of shape (V, V ) whose entries are f(Xij). (6 marks)

Question 9: What are the hyperparameters associated with the weighting function and what is
the intuition behind introducing it? (2 marks)

The cost function can then be written as follows:

J =

V∑
i=1

V∑
j=1

f(Xij)(logXij −WT
i W̃j − bi − b̃j)2

The gradients of the cost function J with respect to all the parameters are introduced in the following equations:

For all i ∈ {1, . . . , V } and all j ∈ {1, . . . , V }:

∇Wi
J(Wi) = −2

V∑
j′=1

f(Xij′)
(

logXij′ −WT
i W̃j′ − bi − b̃j′

)
W̃j′ (2.1)

∇W̃j
J(Wj) = −2

V∑
i′=1

f(Xi′j)
(

logXi′j −WT
i′ W̃j − bi′ − b̃j

)
Wi′ (2.2)

∇biJ(bi) = −2

V∑
j′=1

f(Xij′)
(

logXij′ −WT
i W̃j′ − bi − b̃j′

)
(2.3)

∇b̃jJ(b̃j) = −2

V∑
i′=1

f(Xi′j)
(

logXi′j −WT
i′ W̃j − bi′ − b̃j

)
(2.4)

Question 10: What is the total number of parameters in the model ? What are the shapes of all
the gradients introduced in the equations 2.1, 2.2, 2.3 and 2.4 ? (2 marks)

Let us introduce two training methods:

• The first training method is called alternating least squares. It consists in finding the update equations
by setting all the gradients to zero.

• The second training method consists in applying the gradient descent algorithm.
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2.2 Alternating least squares

We would like to estimate the parameters W, W̃ , b, b̃ by setting the gradients to zero.

Question 11: Show that: (2 marks)

∀a, b ∈MD,1(R) (aT b) b = (b bT ) a

Question 12: By setting the gradients to zero, prove that we get the following update equations:
(6 marks)

∇Wi
J(Wi) = 0 ⇐⇒ Wi =

 V∑
j′=1

f(Xij′)W̃j′W̃
T
j′

−1 V∑
j′=1

f(Xij′)(logXij′ − bi − b̃j′)W̃j′


∇W̃j

J(W̃j) = 0 ⇐⇒ W̃j =

(
V∑
i′=1

f(Xi′j)Wi′W
T
i′

)−1( V∑
i′=1

f(Xi′j)(logXi′j − bi′ − b̃j)Wi′

)

∇biJ(bi) = 0 ⇐⇒ bi =

 V∑
j′=1

f(Xij′)

−1 V∑
j′=1

f(Xij′)(logXij′ −WT
i W̃j′ − b̃j′)


∇b̃jJ(b̃j) = 0 ⇐⇒ b̃j =

(
V∑
i′=1

f(Xi′j)

)−1( V∑
i′=1

f(Xi′j)(logXi′j −WT
i′ W̃j − bi′)

)

Each update equation for one parameter is a function of the other parameters. Therefore, in order to train our
model, we can choose a number of iterations Nepochs, and apply the update equations Nepochs times by keeping
track of the loss to make sure it converges.

For each iteration step t ∈ {0, . . . , Nepochs − 1}, let W (t), W̃ (t), b(t), b̃(t) represent the parameters of our model
at the iteration t.

The update equations from iteration t to t+ 1 can then be written as follows:

W
(t+1)
i ←−

 V∑
j′=1

f(Xij′)W̃
(t)
j′ W̃

(t)T

j′

−1 V∑
j′=1

f(Xij′)(logXij′ − b(t)i − b̃
(t)
j′ )W̃

(t)
j′

 (2.5)

W̃
(t+1)
j ←−

(
V∑
i′=1

f(Xi′j)W
(t)
i′ W

(t)T

i′

)−1( V∑
i′=1

f(Xi′j)(logXi′j − b(t)i′ − b̃
(t)
j )W

(t)
i′

)
(2.6)

b
(t+1)
i ←−

 V∑
j′=1

f(Xij′)

−1 V∑
j′=1

f(Xij′)(logXij′ −W (t)T

i W̃
(t)
j′ − b̃

(t)
j′ )

 (2.7)

b̃
(t+1)
j ←−

(
V∑
i′=1

f(Xi′j)

)−1( V∑
i′=1

f(Xi′j)(logXi′j −W (t)T

i′ W̃
(t)
j − b

(t)
i′ )

)
(2.8)

The pseudo code for the training algorithm can be expressed as follows:
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Algorithm 3 Training by alternating least squares

Input: logX, f(X), Nepochs

Output: W (Nepochs−1), W̃ (Nepochs−1), b(Nepochs−1), b̃(Nepochs−1) (The trained paramaters)

1: Initialize randomly the parameters W (0), W̃ (0), b(0), b̃(0)

2: costs = [ ]
3: for t← 0, . . . , Nepochs − 2 do

4: Calculate the cost as a function of W (t), W̃ (t), b(t), b̃(t) and append the list costs
5: for i← 0, . . . , V − 1 do

6: Update W
(t+1)
i as a function of W̃ (t), b(t), b̃(t) using 2.5

7: end for
8: for j ← 0, . . . , V − 1 do

9: Update W̃
(t+1)
j as a function of W (t), b(t), b̃(t) using 2.6

10: end for
11: for i← 0, . . . , V − 1 do

12: Update b
(t+1)
i as a function of W (t), W̃ (t), b̃(t) using 2.7

13: end for
14: for j ← 0, . . . , V − 1 do

15: Update b̃
(t+1)
j as a function of W (t), W̃ (t), b(t) using 2.8

16: end for
17: end for

Question 13: Implement the alternating least squares training algorithm 3. (14 marks)

Question 14: Plot the list of losses at the end of each iteration in algorithm 3. (2 marks)

2.3 Learning the weights using gradient descent

In this section, we would like to estimate the parameters of the model using gradient descent.

Let Nepochs be the number of epochs and η be the learning rate. We get the following training algorithm:

Algorithm 4 Training using gradient descent

Input: logX, f(X), η,Nepochs

Output: W (Nepochs−1), W̃ (Nepochs−1), b(Nepochs−1), b̃(Nepochs−1) (The trained paramaters)

1: Initialize randomly the parameters W (0), W̃ (0), b(0), b̃(0)

2: costs = [ ]
3: for t← 0, . . . , Nepochs − 2 do

4: Calculate the cost as a function of W (t), W̃ (t), b(t), b̃(t) and append the list costs
5: for i← 0, . . . , V − 1 do

6: W
(t+1)
i ←−W (t)

i − η∇WiJ(W
(t)
i )

7: end for
8: for j ← 0, . . . , V − 1 do

9: W̃
(t+1)
j ←− W̃ (t)

j − η∇W̃j
J(W̃

(t)
j )

10: end for
11: for i← 0, . . . , V − 1 do

12: b
(t+1)
i ←− b(t)i − η∇biJ(b

(t)
i )

13: end for
14: for j ← 0, . . . , V − 1 do

15: b̃
(t+1)
j ←− b̃(t)j − η∇b̃jJ(b̃

(t)
j )

16: end for
17: end for
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Question 15: Implement the gradient descent training algorithm 4. (14 marks)

Question 16: Plot the list of losses at the end of each iteration in algorithm 4. (2 marks)

3 Introducing regularization (20 marks)

Let us introduce a regularization penalty term in the cost function. The new cost function is defined as follows:

J̃ =

V∑
i=1

V∑
j=1

f(Xij)(logXij −WT
i W̃j − bi − b̃j)2 + λ

(
||W ||2F + ||W̃ ||2F + ||b||22 + ||b̃||22

)

Question 17: Show that: ||W ||2F =
V∑
i=1

WT
i Wi (2 marks)

Question 18: Deduce that for all i ∈ {1, . . . , V }: (4 marks)

∇Wi(||W ||2F) = 2Wi (3.1)

(Hint : ∀z ∈ RD ∀A ∈MD,D(R) ∇z(zTAz) = (A+AT )z

Question 19: From the equations 2.1, 2.2, 2.3, 2.4 and 3.1, show that the update equations for the
method of alternating least squares become: (8 marks)

W
(t+1)
i ←−

 V∑
j′=1

f(Xij′)W̃
(t)
j′ W̃

(t)T

j′ + λID

−1 V∑
j′=1

f(Xij′)(logXij′ − b(t)i − b̃
(t)
j′ )W̃

(t)
j′


W̃

(t+1)
j ←−

(
V∑
i′=1

f(Xi′j)W
(t)
i′ W

(t)T

i′ + λID

)−1( V∑
i′=1

f(Xi′j)(logXi′j − b(t)i′ − b̃
(t)
j )W

(t)
i′

)

b
(t+1)
i ←−

 V∑
j′=1

f(Xij′) + λ

−1 V∑
j′=1

f(Xij′)(logXij′ −W (t)T

i W̃
(t)
j′ − b̃

(t)
j′ )


b̃
(t+1)
j ←−

(
V∑
i′=1

f(Xi′j) + λ

)−1( V∑
i′=1

f(Xi′j)(logXi′j −W (t)T

i′ W̃
(t)
j − b

(t)
i′ )

)

Question 20: What would be the update equations for minimizing the new loss function J̃ by
using the gradient descent algorithm. (6 marks)
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