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Introduction to the principles of Supervised Learning
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Categorisation of Supervised models

* In some instances, all explanatory features are considered on the same footing. This is typically the
case with regressions, and related ones such as Logit (Parametric models).

« Alternatively, the explanatory features may be ordered in a successive manner in order to refine the
selection effort (non Parametric models).

 In the first instance, fitting a model means finding the optimal weights applied to each feature. In the
second instance finding the optimal model means ordering the most relevant features and finding the

best cut-offs at each step.
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Supervised Learning - Parametric Models
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Setting up the Objective

» Supervised Learning is the process of learning a function which maps input data to an output based
on several input-output pairs. Let's detail the process:

- First, we have a dataset of pairs {features, target} = {(X;,Yi)1<i<n} overx xYy
- Typically: X =RPand Y =1{0,1].

« The pairs {(X;, Y;)1<i<n } are assumed to be independent and identically distributed (i.i.d.)
following an unknown distribution. It is important to mention here that we assume no
sequentiality in the data.

 Example:

» Let's consider this small dataset: We try to predict whether a student will fail or pass the final
exam based on some feature values.
* Y, =1 ifthe student pass, y; — ¢ if he fails.

« Foreach x,, the first coordinate represents the number of hours spent on the course, the
second coordinate is the average intermediary quiz mark and the third coordinate is the
number of hours spent on the coursework.

X; = [60,18,30] —> Y7 =1
Xo = [10,10,10] — Y =1
X3 = [07,05,08] — Y3 =0
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Setting up the Objective

« A Supervised Algorithm is an algorithm that aims at building a predictor (i.e, a function® : X — V)
which minimizes an error, based on the dataset.

60 18 30 =
10 10 10 ﬁiﬂ
07 05 08 0
45 17 20 1
X=1|[8 2 30| Y=]1 — -
03 04 12 0
\18 09 20/ \1) Y=10.1}

* In the previous example, our objective was to predict a discrete value : pass or fail (1 or 0). This
supervised task is called classification.

« \We can also try to predict a continuous value: the final exam mark for instance. In that case, the
task is called regression.

Discrete  (typically:{0,1}) > Classification
Y <
Continuous (typically : R) > Regression
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Setting up the Objective

« To define the error, we need first to define a loss function (i.e, a function [ : Y x Y — R which
measures the "distance" between the the output of the predictor and the true labels (Y;)1<i<n ).

- For the loss function, we usually choose for all pairs (ouptut, true label), (y,y’) € Y x Y

1 it y#y

lRegression(yay/) — Hy — y/”% and lClassiﬁcation(ya y/) — 5y7ﬁy’ — { 0 if y=1

« We then define the following error / risk associated to the predictor ® , the aggregate loss over the train
set, which follows an unknown distribution I:

Re(®) = E°[I(Y, ©(X)]

« Our objective is to find the optimal predictor among all the possible functions defined by the modeler
(e.g. Logit, linear regression, etc) F(X,)) :

Finding ¢5 = argmin E'[[(Y,®(X)] = argmin Rp(P)
PecF(X,)) PecF(X,))

« Since [P is unknown, we optimize (minimize) the empirical cumulative risk R,,(®) :

R, (D) — %sz,@m))
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Linear Regression
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Introduction:

» Let us start with the simplest regression model : Linear Regression.

« Consider the following (fake) dataset representing the salary (in the x axis) of some (fake) employees
according to the number of years of experience (in the y axis).

Fake dataset for Linear Regression
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 From the plot, we can see that the salary and the experience variables exhibit a clear linear
dependence.
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Setting up the Objective:

« We would like to find a way to define the red line from the pairs (experience, salary) represented by the
blue points.

« In that way, we could assign an estimated salary to each value of the experience variable.

Best fit for Linear Regression
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Linear Regression: a Mathematical Perspective

« Mathematically speaking, it consists in modeling the conditional distribution of Y;eR
given X, =ux,; € ]RD , parametrized by the set of parameters 0 = (w, b) . as follows:

vie{l,....,N} Y| X;=z;i~N(w'z; +b0%) with weR” and beR
* |n other words,
vie{l,....N} Yi=w!'X;+b+e with e~ N(0,0?%)

 Now that the model is described, we will have to maximize the likelihood of the dataset in order to obtain
the optimal parameters.
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The training process

Let {(X5,Yi)1<i<n} be the dataset used for training.

The model:

vie{l,....N} Yi=w!'X;+b+e with e~ N(0,0?%)

The parameter b can be ignored thanks to a normalisation of the training set :

Vie{l,...,N} Y;=uw'X,+e with X:(f) e RPTL and e ~ N(0,02)

The training process consists in maximizing the log-likelihood w.r.t the parameters W € RP+!

Since the dataset is i.i.d, the likelihood of the training set can be expressed as follows:
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The training process

 In optimization matters, we usually prefer to minimize functions instead of maximizing them.

* Thus, we transform the likelihood maximization problem into the equivalent cost minimization
problem, where the cost is the following negative log-likelihood:

N
1
— log(L(w)) Zlog (yilzs)) = —log(27m 2—2 — ' xy)?

* The training problem can then be written as the following equivalent minimization problem:

|
min —E (y; — Wl x;)?
WweRP+1 [N 4
1=1
J ()
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Matrix Notation and Optimization :

* It is computationally more efficient to write the optimization problem in matrix notation.

« To that end, let's introduce the following matrix notation for the training data {(Xi7 Yz')1§z'§N}

X =

1

1
c RNX(D—I—l) Y —

1

* Then, we deduce the following prediction matrix P :

T
R ’UAJTZIZQ N
P=Xw= , cR
_UA}TCIZN_
- If we denote by | . ]l2 the £2 normon RY (e:VzeRY

express the cost function J which we wish to minimize as follows :

Imperial College Business School
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J(@) = - || X~V |

h
Y2
e RY
YN _
| z ||5= 2*z ), we can then
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Using a Gradient Descent for Optimization

« We will use a Gradient Descent to find 0™ as follows:

« Initilize randomly 10

 Fix a number of iterations /X and a learning rate 77 and repeat K times:

”Lf)k_|_1 < ’lf)k — UV@J(IDk)

Code for Gradient Descent using Numpy

max_iter = 100 # number of iterations for gradient descent
eta = 0.001 # learning rate

losses = []

# Gradient Descent Algorithm

W_hat = np.random.random((D+1, 1))

for i in range(max_iter):
P = X_hat.dot(W_hat) # P = XW + b = X_hat W_hat
loss = (1/N)*((Y - P).T).dot(Y — P) # loss = (1/N) || Y - P ||"2
# gradient w.r.t W_hat : (2/N) (X_hat~T X_hat W_hat - X_hat”T Y)

grad_W_hat = (2/N)*(X_hat.T.dot(X_hat.dot(W_hat)) - X_hat.T.dot(Y))

# Gradient descent update:
W_hat —= etaxgrad_W_hat # W <- W - etaxgrad_W

# append losses
losses.append(float(loss))

Lot losses

.plot(losses)

.xlabel("iteration")

.ylabel("Loss")

.title("Gradient Descent using Numpy")
.show()

Imperial College Business School
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Gradient Descent using Numpy
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Introduction:

The Logistic Regression is one of the easiest classification models to implement. It also performs
very well on linearly separable classes.

« We call decision boundary the hypersurface separating the space of input data between two
subsets, one for each class. The classifier will classify all the points belonging in one side of the

decision boundary as belonging in one class and all those on the other side as belonging in the
other class.

* In the case of a Logistic Regression, the decision boundary is a hyperplane.

* The following scatterplot of the public Iris dataset shows a linear decision boundary associated
with Logistic Regression.
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Presenting the logit function :

« Before introducing the Logistic Regression as a probabilistic model, we should first introduce the
odds ratio.

« The odds ratio (in favor of a particular event) can be writtenas ———  where 6 stands for the
probability of the positive event. -

A high odds ratio means a very probable outcome.

« We can further define the log-odds, also called logit function [O, 1] — R | as the logarithm of the
odds ratio:
6

logit(0) = 1og(m)

« The fact that we consider a log outcome means that poor outcomes matter more to us than positive
outcomes. It is a strong preference choice. It also means that when the logit function outputs a high
level, it means that it is even higher in reality.

* In the context of a Logistic Regression, we assume a linear relationship between feature values and
the log-odds of the conditional probability that a particular sample belongs in the positive class given
its features.

« Mathematically speaking: logit(P(Y; =1 | X; = ;) = wl z;
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The sigmoid function and the Logistic Regression Model

« By inverting the logit function, we obtain:

T
o . 1
where O refers to the sigmoid function A
1 +e %
The Sigmoid Function
10 1 —— sigmoid function
¥
@ 05
=
@
0.0 1
100 -75 -50 -25 00

25 5.0 75 100
Zz

+ In other words, a Logistic Regression consists in modeling the conditional distribution of Y; € {0, 1}

given X, = x, € RYL | parametrized by W . As the probability of the outcome Y being equal to 1 is

the sigmoid function, while that of Y being equal to 0, is (1-sigmoid function), we are in the case of a
Bernoulli distribution applied to the sigmoid function.

Vie{l,...,N} YiX;=uz;~Bo(w z;))

where B stands for the Bernoulli distribution.

Imperial College Business School
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The prediction phase after training:

- The training process consists in finding the parameter w™ that maximizes the likelihood of the dataset.

- After training the model, given a new data point ™ & RY, we can determine the probability of being in
the positive class

PY*=1|X* =2*) = o(w* z%)

The Sigmoid Function

10 1 —— sigmoid function
T
T %
o(w* z*)
N
2
E 05
o
B
T
Tk
0.0 - w T

100 -75 -50 -25 00 25 50 75 10.0
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The Training Process: finding the optimal W

« Let{(X;,Y:)1<i<n} be the dataset used for training.
» The model: vie{l,...,N} Y;|X;=uz; ~B(o(w'z;))

* The likelihood of the dataset can be expressed as follows:
N

— HP(YZ — Y; | X@' = 377;§”LU) = Ho-(wai)yi(l . U(wTﬂfi)l_yi)

1=1

* Hence, the normalized negative log Iikelihood (or cost function) is:

1

J(w) =——log(L(w)) = —— Z y; log(o(whz;)) + (1 — y;) log(1 — a(wTa:i)))

N

« The training problem can then be written as the following minimization problem:

|

N
. 1
min —— > (yilog(o(w”2) + (1 - i) log(1 — o(w'z,))
n=ll
7 (w)

Imperial College Business School
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Using a Gradient Descent for Optimization

« We will use Gradient Descent to find ™* as follows:
 Initilize randomly wWg

« Fix a number of iterations /X and a learning rate 7] and repeat K times:

Wi+1 < Wk — NV (W)

Code for Gradient Descent using Numpy

max_iter = 10000 # number of iterations of gradient descent

| | |

e P T T T T s P e e Gradient Descent for Logistic Regression using Numpy
losses = [] 130
W = np.random. randn(D)
for i in range(max_iter): 160 -
P = expit(X.dot(W)) # P =sigmoid(Xw)
# Loss = —(1/N) (sum_i y_i log(sigmoid(w T x_i))
# + (1-y_i) log(sigmoid(- w*T x_i)))) 140 -
loss = = (1/N)*np.sum((Y * np.log(P)) + ((1 - Y)*np.log(expit(-P))))
epsilon = P - Y &
epsilon_hat = np.diag((epsilon)[:, 0]) S
grad_W = (1/N)* np.sum((epsilon_hat).dot(X), axis = @) # gradient w.r.t W 120 A
# Gradient descent update:
W —= etaxgrad W # W <- W - etaxgrad_W 100 4
# append losses
losses.append(float(loss)) 80 -
plt.plot(losses)
plt.xlabel("iteration") . .
plt.ylabel("Loss") 0 2000

plt.title("Gradient Descent for Logistic Regression using Numpy")
plt.show()

Imperial College Business School

4000 6000 8000
iteration

Imperial means Intelligent Business

10000

23




Supervised Learning - Non Parametric Models
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Decision Trees and Random Forest

Imperial College Business School
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Introduction:

 The Decision Tree (DT) algorithm is an attractive model if we care about interpretability.

« As the name decision tree suggests, we can think of this model as breaking down our data by making a
decision based on asking a series of questions.

Decision regions Decision Tree Graph

) 4 o, Yes No

0.7 x

Yes No

++
'l'_|_+ % % +

0.5 X4

Imperial College Business School Imperial means Intelligent Business 26



A high level description of the algorithm

« The DT algorithm is basically just a bunch of nested if-statements on the input features (also called
attributes) in the training dataset.

* The decision algorithm:

We start at the tree root (with the whole dataset)

 Then we split the dataset on the attribute that results in the largest Information Gain (1G).

« We iterate the splitting procedure at each child node until the leaves are pure (which means
that the samples at the leaves belong to the same class)

« Avery deep tree is prone to overfitting. To avoid that, we set a limit for the maximal depth of
the tree.
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Building Decision Trees

» First, we need to define an objective function that we want to optimize (Information Gain).

« Then, at each iteration, two challenges arise when trying to choose the best spilit.

 How do we choose the best attribute responsible for the split ?

 How do we choose the threshold when splitting based on the "best attribute" ?

Imperial College Business School

Thresholds
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Information Theory : Entropy - Part 1 -

« Let Y be arandom variable taking values in the finite set )/

« Let's denote p(y) = P(Y — ?/)

1
* In information theory, the quantity I(y) — logQ(@) can be interpreted as a quantity of

information carried by the occurence of y (sometimes called self-information).

So, the entropy is defined as the expected amount of information of the random variable Y

H(Y) =Eu) I(YV)] = = p(y)log,(p(y))
yey
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Information Theory : Entropy - Part 2 -

« Let's take an example of a Bernoulli distribution Y ~ B(p)

Entropy function

 The entropy of Y as a function of P is:

H(p) = —plogy(p) + (1 — p)logy(1 — p)

o -

- p = 0.5 yields maximum entropy.

0.0 02 0.4 0.6

* So, the entropy is a measure of how much information we get | | R
from finding out the value of the random variable.

« We have the following inequalities:

H(Y) >0 with equality if Y is constant a.s

H(Y) <log,(Card()))

Imperial College Business School Imperial means Intelligent Business
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Information Gain - Definition -

« We define the information gain at a split on the attribute € as follows:

B N left
Np

Nright

IG(D,,c) = I(D,) N

I(Dleft) —

I(Dright)

Dy, refers to the dataset of the parent.

Diest and Dright are the datasets of the left and right child nodes. (For simplicity, most libraries
only implement binary decision trees).

I is the impurity measure.

Np is the total number of samples at the parent node.

Nieft and Nright are the total number of samples at the right and left child nodes.
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Different impurity measures

* The three impurity measures or splitting criteria that are commonly used in binary decision trees are Gini
Impurity ( I ), Entropy (), and the Classification Error (I ).

« Let's denote p}? the proportion of the samples that belong to the class 1M < {1, S M} for a
particular node k . We define the above stated impurities as follows:

= Entropy Entropy (scaled) == Gini Impurity =+ Misclassification Error
M
10 A
_ ™m m
Ig(k) = — E P (1 —pp")
m=1 0.8 -
>
M 5
£ 06 -
- m m
Iy (k) = — E py’ logs (p') é‘
m=1 £ 04-
0.2 -
Ip(k)=1— max p;"
1<m§M 0.0 (" L]
00 0.2 0.4 0.6 0.8 10
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A simple example - Description -

» Let's consider the following example:

We want to predict whether a person is sick ornot ( ¥ = 1 ifitsthecaseand Y = 0 if not)
based on the followins 4 features:

X1 € {O, 1} is whether the person was in contact with someone or not during the last month.
(X; =1 ifitsthecaseand X; = 0 if not).

X3 € [0, 100] is the number of times the person has touched their face per day.

X3 € [0, 10] is the number of times the person has washed their hands per day.

X4 € {0, 1} is whether the personisaman ( X, = (Q)orawoman ( X, = 1).

Imperial College Business School Imperial means Intelligent Business
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A simple example - Dataset -

* We end up with the following small dataset of 10 samples.

h<

08
87
93
97
81
42
28
12

G N Y e s e S el o)
IO~ W|IO | N|d~hO|—~|O
OO0 OO~ OO |0

» Let's use the entropy as the impurity measure.

. - 1 1 1 1
We have at the root: I(D,))=H(Y) = 5 10%2(5) 5 10g2(§) =1
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A simple example - split on « man vs woman » column -

« Let’s split on the attribute « man/woman » ( X4 )

X4 =0

X4 =1

Imperial College Business School

98

87

93

81

28

12

s e Y e el le)

OO~ WIN/O |~ |0O

OO OO0 0| O |0O

Olala|lOoln|lnjo|lo] K

97

42

I(Diett) = HY | X4 =0) = 1

[(Dyigne) = HY | Xy = 1) = 1
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A simple example - split on « man vs woman » column -

 If we split on the attribute « man/woman » ( X4 ) , we obtain the following information gain :

Ne Nri
IG(D,, X,) = I(D,) — ]\lfftI(Dleft) _ NghtI(Dﬁght)
D D
9
=1 — S Xx1——x1
10 10

« \We conclude that there is absolutely nothing to gain from splitting on the « man/woman » attribute.

Men and women seem to have the same likelihood to be infected by the disease.

Imperial College Business School
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A simple example - split on «in contact with a person » column -

« Let’s split on the attribute «in contact with a person » ( X7 )

* We obtain then the following information gain :

IG(D,, X;)=1— % x 0 — % x 0.95 = 0.24

% KXy
0 98 0 0 0
0 87 1 0 0
1 93 9 0 1
1 97 4 1 1
1 81 7 0 1
1 42 8 1 0
1 28 3 0 0
1 12 1 0 1
1 8 0 0 1
1 2 9 0 0
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Finding the best split for a particular column

* In the last example, we made it easy : « man/woman » and «in contact with a person » columns have
only two possible values each.

* For continuous data, we can find some rules that lead to a smaller set of possible values.

« So to find the best split for a continuous attribute X :
- We sort the values of the attribute in order, and sort the target Y in the corresponding way.
- We find all the boundary points (i.e, where Y changes from one value to an other).
» \We calculate the information gain when splitting at each boundary

« We keep the split which gives the highest information gain.

Imperial College Business School Imperial means Intelligent Business
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A simple example - Split on « Number of washing hands »
column at the root -

» We can see that the best split (the one with the highest information gain) on the « Number washing
hands » column (X3 ) is still very low.

« For the first split (at the root), it is better to do it on « in contact with a person » column ( X1) as the
information gain is 0.24.

0.5

Thresholds < 3.5

5.5
7.5
8.5

Imperial College Business School

X% XXy
0 98 0 0 0
N 8 0 0 :
: 12 : 0 1
Lo 87 1 0 0
g 28 3 0 0 | . L.
g 97 4 : 1
I 81 7 0 1 oo
1 42 8 : 0
B 2 9 0 0
: 93 9 0 1

— 1G

Imperial means Intelligent Business 39



A simple example - Split on « Number of washing hands » column
after some iterations -

« After some iterations, splitting on « Number of touching face » column (Xg ) becomes interesting.

X % | XN Xy
1 8 0 0 1 IG
,@ X 1 12 1 0 1 (_
1 28 3 0 0
Thresholds — 89 = 1 42 8 1 0
o0 I 2 9 0 0

Imperial College Business School Imperial means Intelligent Business 40


iPad

iPad


Basic example after training

« When do we actually stop splitting ?
» If a node is pure (all the samples of this node belong to the same category), we make it a leaf
node and predict the class of the samples.
 If the maximum information gain = 0, we gain nothing from splitting, we make the node a leaf
node and predict the most likely class (majority vote).

« To avoid overfitting, we set a limit to the depth of the tree.

» By applying the training algorithm on the basic example, we obtain the following tree:

In a contact with a person <= 0.5
gini=0.5
samples = 10

value = [5, 5]
class = Not Infected

True Y:Ise

[\lumber of times you touch your face <= 61 Ej

gini = 0.469

samples =8

value = [3, 5]
class = Infected

i

Number of times you wash your hands <= 2. 0
gini = 0.48
samples =5
value =3, 2]
class = Not Infected

dh

Imperial College Business School Imperial means Intelligent Business
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Decision Trees on the Iris Dataset - Data -

« The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris
versicolor), so 150 total samples.

* Four features were measured from each sample: the length and the width of the sepals and petals, in
centimeters.

Setosa Versicolor

Virginica
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Decision Trees on the Iris Dataset - Model Selection -

« To find the optimal set of hyperparameters, we use a grid search method, which is a brute-force
exhaustive search paradigm where we specify a list of values for different hyperparameters, and the
algorithm evaluate the model performance (via cross validation) for each combination of
hyperparameters.

* For decision tree algorithm, we tuned the following two hyperparameters:
* Impurity measure: with the two possibilities :

« Gini
* Entropy

» The depth of the tree: with values in [1, 2, 3, 4, 5, 10, 20, 30, 40]

« As a result, we obtain the following best parameters:
« Best impurity : « gini »
- Bestdepth:5

Imperial College Business School Imperial means Intelligent Business
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Decision Trees on the Iris Dataset - Biais/Variance Tradeoff -

« By increasing the tree depth, we increase the model complexity.

 If the complexity is too small, it will affect the performance on both the training set and the test set
(the model will suffer from high bias).

 If it's too big, we could achive a perfect score on the training set but the performance will deteriorate
on the test set (the model will suffer from high variance).

Underfitting
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Complexity too small
(high bias)

Complexity: neither

too big, nor too small.

Overfitting
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Decision Trees on the Iris Dataset - Overfitting -

« By plotting the model training and validation accuracies as functions of the training set size, we can
detect whether the model suffers from high variance or high bias, and whether the collection of

more data could help address this problem.

Accuracy vs max depth

Accuracy vs training set size
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Combining multiple decision trees via Random Forest

 The Random Forest algorithm aims to average multiple decision trees that individually suffer from
overfitting, in order to build a model with better generalization performance. It consists in the
following steps:

1. Randomly choose 7@ samples from the training set with replacement (bootstrap
sample).

2. Grow a decision tree from the bootstrap sample. And at each node:
« Randomly select d attributes without replacement.

« Split the node using the attribute that provides the best split according to maximizing
the information gain.

3. Repeat the firs two steps K times.

4. Use the K trees to assign the class label by majority voting.
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The Random Forest Algorithm on the Iris dataset

* The Hyperparameters of the Random Forest Algorithm:

The sample size 1 of the bootstrap controls the bias-variance tradeoff of the Random Forest.

* In most libraries (including scikit-learn), the size of the bootstrap sample is chosen to be equal to the
number of samples in the training dataset.

» For the number of attributes d at each split, a reasonable default value (used in scikit-learn) is |d = v/ D

where [) is the number of attributes in the dataset.

* So, one big advantage of Random Forest is that it requires very little tuning: The main hyperparameter
to tune is the number of trees.

10
Swae™ TR T T 1 i
0.9
* By tuning the number of trees as a 08
hyperparameter for the Iris dataset, we get 5
as the best value, which is confirmed by the < 07
following curve:
0.6
—&— training accuracy
—=®m~ validation accuracy

0 5 10 15 20 25 30 35 40
n_estimators
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Go to the following link and take Quiz 1 :

https://mifbg.github.io/MachinelLearninginFinance/
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Position of the Problem:

» Let us start with a basic example.

The Gradient Descent algorithm is the backbone of Machine Learning.

» We want to minimize the function f : 6 — 6% by using the gradient descent algorithm.

« As shown in the figure below, finding the minimum
can be achieved by finding where the derivative
(slope) is zero. To that end, we can do the following
steps:

* Choose a random initial point 0o

 Choose a learning rate 7 > 0 and repeat
until convergence:

df

Hk—l—l < Hk — 77@

(Ok)

Imperial College Business School

Gradient Descent

-100 -75 -50 -25
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Gradient Descent Theorem:

» Before stating the gradient descent theorem, let's recall that the gradient is just the multidimensional

equivalent of the derivative.
of . Of Of
CROR< ORI ROY

+ For f:0cR*—R: vef<0):(801(9)’892 004

Gradient Descent Algorithm:
« Suppose we have a convex and differentiable function f: R4 — R

1
 Suppose its gradient is (Lipschitz) continuous with constant € . Let’s fix the learning rate 7/ < E

« Then, if we run the gradient descent algorithmn for K iterations:

« Initialize randomly 6

« Repeat K times Orpi1 < O — nvef(é’k)
- It will yield a solution which satisfies: f(0x) — f(OF) < 190 — 0" II2
- 2nK
where: || - |l2 isthe £ normon R? i.e: Vz € RY | 2 H%: 21 2)
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Choice of the learning rate in Gradient Descent:

« Under the assuptions of the gradient descent theorem, the algorithm is guarenteed to converge and it
converges with a rate of 0(%)

« Thelearning rate 71 should not be too big so that the objective function does not blow up, but not too
small so that it doesn't take too much time to converge.

Small learning rate Big learning rate
100 100
80 1 80 1
B0 1 60 1
= -
40 A 40 -
20 1 20
0 1 ! 0 - _ ! ! |
—16.0 —7'.5 —!';.0 —2'.5 0.'0 2.15 ' E;.'O ' 7.'5l !10'.0 —16.0 ﬂ"I'.S —5'.'0 —2'.5 0.0 2.'5 5.'0 ' 7.'5 IIOI.O
Of - 0o 01 03 . 0 O

* In this case, the learning rate is fixed, we will present in Lecture 4 other versions of the gradient descent

algorithm but with a learning rate that decreases with iterations, when we are closer to the optimal
parameters.
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Using the gradient Descent in the case of a linear regression

The training problem has been written as the following equivalent minimization problem:

1 N
min — E (yf,;—’UAJTCCf,;)Q
WweRD+1 [V 4
1=1
J (W)

Imperial College Business School Imperial means Intelligent Business



Matrix Notation and Optimization :

|t is computationally more efficient to write the optimization problem with matrix notation.

« To that end, let's introduce the following matrix notation for the training data {(Xi7 Yz')1§z'§N}

X =

1

1
c RNX(D—I—l) y —

1

.+ We then deduce the following prediction matrix P :

T
R ’UAJTZIZQ N
P=Xw= , cR
_UA}TCIZN_
- If we denote by | . ]l2 the £2 normon RY (e:VzeRY

express the cost function .J we look to minimize as follows :

Imperial College Business School

. |
J(@) = - || X~V |

h
Y2
e RY
YN _
| z ||5= 2*z ), we can then

Imperial means Intelligent Business

55



Matrix Notation and Optimization :

1

+ To cost function J() = — || X — Y ||2 is a differentiable convex function whose minima are thus
characterized by the setting the gradient to zero.

* |In order to differenciate the cost function, we will need the following formulas:

Vz € R" VA € R™*" V,(z'Az) = (A+ A1)z
VzeR"VEER" V., (1€ =¢

TS Vo) =0 < Vg (%(Xw ~T( X — Y))
— % (vw(wXTXw) — V(T XTY) — vw(YTXw))
= %(XT)M - XTY) =0
— XT"Xw=XTYy

« We deduce the following expression of the gradient : Vo (W) = %()A(TXQZ) — XTY)

. If XT X isinvertible, the optimal W™ is given by the following closed form: 1b* = (XTX)_lXTY
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Using the gradient Descent in the case of a logistic regression

* The training problem has been written as the following equivalent minimization problem:

N
_ 1
min —— 3" (yilog(o(w'z:)) + (1 = i) log(1 — o(w”a,))
1=1
7 (w)
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Gradient Descent for Logistic Regression:

« Using these two properties of the sigmoid function:

VzeR o(—2)=1-0(2)
VzeR d'(z) =0(2)(1 —0(2)) =0c(2)o(—2)

 We can rewrite the cost function as follows:
1 N
J(w) = == Z (yZ log(o(whz;)) + (1 — y;) log(1 — O'(UJTCE‘i)))
1 N
= Z (yz-wai + log(a(—wT:Ci)))

Vi d(w) = Vy (%Z Yyiw $z+10g o(— waZ)))>

=1
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Matrix Notation for the Gradient :

 let's introduce the following matrix notation for the training data {(Xz', Yi)lgigN}:

c RNXD

« The prediction vector P &€ R¥ is then defined as follows:

. And the error vector € € RY is defined as follows:

Imperial College Business School

Y1
Y2
Y = c {0,1}"
YN
o(wlxy)
o(w!xs)
P = ,
_a(waN)_
Co(wlzy) —
o(wlzy) — yo
e=P—-Y =

a(waN) — YN
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Matrix Notation for the Gradient :

 The error vector € & RY can be represented by € : a diagonal RV*N matrix as follows:

T

o(w' 1) — Y1
T _
. o(w' x2) — Yo - RNXN
L g (waN ) — YN _
. As aresult, the matrix €X € RV*XP  contains all the information needed to compute the
gradient:
—  (o(w'm) —y)zr
T
—  (o(w22) —y1)r2 —
eX = c RNV*D
- (o(w'zn) —y)an  —
e ndeed, if Ri,...,Ry aretherows €X ,thegradientof J w.rt. w can be expressed as
follows:

Imperial College Business School

1 N
V(W) = + Y R
1=1
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