
Data Structures and Algorithms
with applications in Machine Learning

- Mock MCQ 1 -

NAME: GROUP:

Each Question: 1 Mark Duration: 30 Minutes

Completely fill the circles as shown: ## #

Answer sheet

Q1. # a.
b.
c.
d.

Q2. # a.
b.
c.
d.

Q3. # a.
b.
c.
d.

Q4. # a.
b.
c.
d.

Q5. # a.
b.
c.
d.

Q6. # a.
b.
c.
d.

Q7. # a.
b.
c.
d.

Q8. # a.
b.
c.
d.

Q9. # a.
b.
c.
d.

Q10. # a.
b.
c.
d.

1

The Quiz

Q. 1 Complete the missing part of the function to create a word index dictionary from a list of
documents.

The input is a list of documents, where each document is a list of tokens. For example:

documents = [["the", "cat", "sat"], ["the", "dog", "barked"]]

The function should return a dictionary where each unique word is assigned a unique integer
starting from 1. For example:

{

"the": 1,

"cat": 2,

"sat": 3,

"dog": 4,

"barked": 5

}

Complete the missing part of the if statement to ensure only unique words are added to the
dictionary:

def create_word_index(documents):

"""

Creates a word_index dictionary mapping unique tokens to unique integers.

Parameters:

documents (list of list of str): List of documents, where each document

is a list of tokens.

Returns:

dict: A dictionary mapping words to unique integers.

"""

word_index = {}

current_index = 1

for document in documents:

for token in document:

Check if the token is already in the dictionary

if ____________: # Fill in the blank

word_index[token] = current_index

current_index += 1

return word_index

What should replace the blank in the if statement?

a. token in word index
 b. token not in word index
c. current index in word index
d. token == word index

2

Q. 2 What is the expected result of applying the word index dictionary to convert a corpus into
sequences of integers?

For example, given the following corpus:

documents = [["the", "cat", "sat"], ["the", "dog", "barked"]]

And the word index dictionary:

{

"the": 1,

"cat": 2,

"sat": 3,

"dog": 4,

"barked": 5

}

What would the resulting sequences look like?

 a. [[1, 2, 3], [1, 4, 5]]
b. [[”the”, ”cat”, ”sat”], [”the”, ”dog”, ”barked”]]
c. [[2, 3, 1], [4, 5, 1]]
d. [1, 2, 3, 4, 5]

Q. 3 Below is the algorithm for computing the co-occurrence matrix:

Algorithm 1 Getting the Co-occurrence Matrix

Require: sequences (list of lists of integers), context size
Ensure: X (the co-occurrence matrix)
1: Initialize matrix X ∈MV,V (R) with zeros
2: for all sequence in sequences do
3: for all center word with index i in sequence do
4: for all context word with index j in context of center word do
5: if i ̸= j then
6: X[center word, context word]← X[center word, context word] + 1
7: end if
8: end for
9: end for
10: end for
11: return X

The task is to implement this algorithm in Python. Complete the missing part of the following
function to handle the update of the co-occurrence matrix.

def get_cooccurrence_matrix(sequences, context_size, vocab_size):

"""

Creates a co-occurrence matrix from sequences of word indices.

Parameters:

sequences (list of list of int): List of sentences represented

as lists of word indices.

context_size (int): The size of the context window.

vocab_size (int): The size of the vocabulary.

3

Returns:

numpy.ndarray: A co-occurrence matrix of shape (vocab_size, vocab_size).

"""

import numpy as np

X = np.zeros((vocab_size, vocab_size), dtype=np.float32)

for sequence in sequences:

for i, center_word in enumerate(sequence):

Define start and end of the context window

start = max(0, i - context_size)

end = min(len(sequence), i + context_size + 1)

for j in range(start, end):

if i != j:

Update the co-occurrence matrix

X[center_word, sequence[j]] = __________ # Fill in the blank

return X

What should replace the blank to correctly implement the algorithm?

a. X[center word, sequence[j]] - 1
 b. X[center word, sequence[j]] + 1
c. X[sequence[j], center word] + 1
d. X[center word, center word] + 1

Q. 4 What does the element Xij in the co-occurrence matrix represent based on the algorithm for
constructing the matrix?

 a. The number of times the word represented by index j appears in the context of the
word represented by index i within the specified context window

b. The frequency of the word represented by index i in the entire corpus
c. The cosine similarity between the words represented by indices i and j
d. The total number of words in the sentence containing i and j

Q. 5 Given the following small corpus and word index:

corpus = [["cat", "sat", "on", "the", "mat"],

["the", "cat", "is", "cute"]]

word_index = {"cat": 0, "sat": 1, "on": 2, "the": 3, "mat": 4, "is": 5, "cute": 6}

Suppose the context window size is 1. Calculate X0,3, where Xij is the number of times the
word corresponding to index j ("the") appears in the context of the word corresponding to
index i ("cat").

 a. X0,3 = 2, because the word "the" appears twice in the context of "cat" in the
corpus

b. X0,3 = 1, because the word "the" appears only once in the context of "cat" in the
corpus

c. X0,3 = 0, because the word "the" does not appear in the context of "cat"
d. X0,3 = 3, because the word "the" appears three times in the corpus

4

Q. 6 Recall the desired approximation:

logXij ≈ W T
i W̃j + bi + b̃j

The term W T
i W̃j represents the relationship between the word indexed by i and the word

indexed by j through their embeddings.

If we manage to achieve this approximation, what would we expect regarding the following
comparisons of the dot products for the words "king", "queen", and "apple" with embeddings
Wking,Wqueen,Wapple?

 a. W T
kingWqueen > W T

kingWapple

b. W T
kingWqueen < W T

kingWapple

c. W T
kingWqueen = W T

kingWapple

d. W T
kingWqueen = 0

Q. 7 Recall the cost function J :

J(θ) =
V∑
i=1

V∑
j=1

f(Xij)(logXij −W T
i W̃j − bi − b̃j)

2

The parameters to optimize are:

• W ∈MV,D(R), the first embedding matrix,

• W̃ ∈MV,D(R), the second embedding matrix,

• b ∈ RV , the bias vector for W ,

• b̃ ∈ RV , the bias vector for W̃ .

What is the total number of parameters to train in the model, assuming the vocabulary size
is V and the embedding dimension is D?

 a. 2V D + 2V

b. V D + V

c. V 2 +D2

d. 2V +D

Q. 8 Consider the gradient of the cost function J with respect to Wi, given by:

∇Wi
J(Wi) = −2

V∑
j′=1

f(Xij′)
(
logXij′ −W T

i W̃j′ − bi − b̃j′
)
W̃j′ .

What is the shape of ∇Wi
J(Wi)?

 a. RD

b. RV

5

c. RV×D

d. R

Q. 9 The following pseudo-code implements gradient descent for optimizing the loss function J . Fill
in the blank to correctly update the embedding matrix W during training.

Algorithm 2 Optimizing the Loss Function with Gradient Descent

Require: logX, f(X), learning rate η, number of epochs Nepochs

Ensure: W (Nepochs−1), W̃ (Nepochs−1), b(Nepochs−1), b̃(Nepochs−1) (The trained parameters)
1: Initialize parameters W (0), W̃ (0), b(0), b̃(0)

2: for t = 0 to Nepochs − 1 do
3: Compute the cost J(W (t), W̃ (t), b(t), b̃(t))
4: for i = 0 to V − 1 do
5: W

(t+1)
i ← . . . ▷ Update Wi using gradient descent

6: end for
7: for j = 0 to V − 1 do
8: W̃

(t+1)
j ← W̃

(t)
j − η · ∇W̃j

J(W̃
(t)
j)

9: end for
10: for i = 0 to V − 1 do
11: b

(t+1)
i ← b

(t)
i − η · ∇biJ(b

(t)
i)

12: end for
13: for j = 0 to V − 1 do
14: b̃

(t+1)
j ← b̃

(t)
j − η · ∇b̃j

J(b̃
(t)
j)

15: end for
16: end for

What should replace the blank in the update step for W
(t+1)
i ?

 a. W
(t)
i − η · ∇Wi

J(W
(t)
i)

b. W
(t)
i + η · ∇Wi

J(W
(t)
i)

c. W
(t)
i −∇Wi

J(W
(t)
i)

d. W
(t)
i +∇Wi

J(W
(t)
i)

Q. 10 After training the model using gradient descent, the algorithm outputs the embedding matrices
W and W̃ .

What do these embedding matrices represent?

 a. W and W̃ are matrices of word embeddings where each row corresponds to a vector
representation of a word, capturing its semantic relationships with other words in the
vocabulary.

b. W and W̃ are co-occurrence matrices where each element represents the number of
times two words co-occur in the corpus.

c. W and W̃ are matrices of random values, used only for initializing the optimization
process.

d. W and W̃ are matrices of word frequencies where each row corresponds to the total
number of occurrences of a word in the corpus.

6

