Data Structures and Algorithms with applications in Machine Learning - $MCQ\ 3$ -

NAME:		ME: .	GROUP:				
			Each Question: 1 Mark		Dura	ation: 20 Minutes	
			Completely fill the	circles as	shov	wn: ○○●○	
Ans	swei	r sh	eet				
Q1.	0 0 0	a. b. c. d.		Q6.	0000	a. b. c. d.	
Q2.	0 0 0	a. b. c. d.		Q7.	0 0 0	a. b. c. d.	
Q3.	0 0 0	a. b. c. d.		Q8.	0000	a. b. c. d.	
Q4.	0 0 0	a. b. c. d.		Q9.	0000	a. b. c. d.	
Q5.	0 0 0 0	a. b. c. d.		Q10.	0000	a. b. c. d.	

The Quiz

Credit risk prediction aims to build a model capable of determining the quality of a loan. Loans are classified into two categories:

- Good (G): Indicates a low risk of default, encoded as 1.
- Bad (B): Indicates a high risk of default, encoded as 0.

The prediction is based on the following features:

- Age: A numerical value ranging from 18 to 100.
- Geography: A categorical variable with possible values Germany, France, UK, China, and Japan.
- Sex: A categorical variable, either male or female.
- Purpose: A categorical variable with values P1, P2, P3, and P4.
- Credit: A numerical value representing the loan amount in dollars.
- Duration: A numerical value indicating the loan term in months.
- Education: A categorical variable, classified as either unskilled or skilled.

Preprocessing

Q. 1 To normalize numerical features such as Age, Credit, and Duration, the following transformation is applied:

$$x_{\text{normalized}} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

What is the name of this transformation?

- O a. Logarithmic Transformation
- b. Min-Max Scaling (scaling to [0,1])
- O c. Standardization (scaling to zero mean and unit variance)
- O d. No transformation is required
- Q. 2 Consider the categorical variable Geography, which has the following categories and their associated indices:
 - Germany: 0
 - France: 1
 - UK: 2
 - China: 3
 - Japan: 4

After applying one-hot encoding, one column is dropped to avoid multicollinearity. If a sample has the value Germany, what would the one-hot encoded transformation look like?

O a. [1, 0, 0, 0, 0]

- b. [1, 0, 0, 0]
- O c. [Germany]
- O d. [0, 0, 1, 0]
- Q. 3 After normalizing numerical features and one-hot encoding categorical features, what will be the shape of the feature matrix X and target vector y, assuming 1000 samples? The table below describes the number of categories for each categorical variable:

Categorical Variable	Number of Categories
Geography	5
Sex	2
Purpose	4
Education	2

Table 1: Number of Categories for Categorical Variables

Assume that one column is dropped for each one-hot encoded categorical variable to avoid multicollinearity.

- a. X.shape = (1000, 12), y.shape = (1000,)
- O b. X.shape = (1000, 15), y.shape = (1000,)
- Oc. X.shape = (1000, 13), y.shape = (1000,)
- O d. X.shape = (1000, 9), y.shape = (1000,)

In the next section, we will explore how to train a Decision Tree model to classify loans as either low-risk (Good) or high-risk (Bad).

Training a Decision Tree Model

Q. 4 Let Y be a random variable that can take values from the finite set $\mathcal{Y} = \{y_1, y_2, \dots, y_n\}$. The probability distribution of Y is denoted as $p(y) = \mathbb{P}(Y = y)$, where $y \in \mathcal{Y}$. The entropy of Y is defined as:

$$H(Y) = -\sum_{y \in \mathcal{Y}} p(y) \log_2(p(y)).$$

Which of the following statements best explains the meaning of entropy?

- \bigcirc a. Entropy measures the likelihood of the most probable value of Y.
- \bigcirc b. Entropy represents the total uncertainty across all possible outcomes of Y, without averaging.
- \bigcirc c. Entropy is the measure of how many outcomes Y can possibly take.
- lacktriangle d. Entropy quantifies the average uncertainty reduction (in bits) when the value of Y is revealed.

Q. 5 Which of the following equations correctly defines the information gain IG for a split based on X?

• a.
$$IG(D_p, X) = I(D_p) - \frac{N_{\text{left}}}{N_p} I(D_{\text{left}}) - \frac{N_{\text{right}}}{N_p} I(D_{\text{right}})$$

$$\bigcirc \quad \text{b. } IG(D_p,X) = I(D_p) + \frac{N_{\text{left}}}{N_p} I(D_{\text{left}}) + \frac{N_{\text{right}}}{N_p} I(D_{\text{right}})$$

$$\bigcirc \quad \text{c. } IG(D_p, X) = \frac{N_{\text{left}}}{N_p} I(D_{\text{left}}) + \frac{N_{\text{right}}}{N_p} I(D_{\text{right}})$$

$$\bigcirc \quad d. \ IG(D_p, X) = I(D_{left}) - I(D_p) - I(D_{right})$$

Where:

- D_p : The dataset at the parent node.
- D_{left} , D_{right} : The datasets at the left and right child nodes.
- N_p : The total number of samples at the parent node.
- N_{left} , N_{right} : The total number of samples in the left and right child nodes.
- I(D): The impurity measure of a dataset D.
- **Q.** 6 Consider the following dataset of 10 samples with the binary feature "Sex" and the target variable Y:

$\mathbf{Sex}(X)$	Target (Y)
Male	0
Female	1
Female	1
Male	0
Female	1
Male	0
Male	0
Female	1
Male	0
Female	0

Table 2: Dataset of 10 samples with binary feature "Sex" and target variable Y.

Using this dataset:

- Y is the target variable, where 1 indicates "Good" (low risk) and 0 indicates "Bad" (high risk).
- X is the feature "Sex," where "Male" and "Female" are the two possible values.

5

What is the information gain IG(D, X) for a split based on X?

$$\bigcirc$$
 a. $IG(D, X) = 0.5$

$$\bigcirc$$
 b. $IG(D, X) = 0.0$

$$\bigcirc$$
 c. $IG(D, X) = 0.8$

• d.
$$IG(D, X) = 1.0$$

Q. 7 The following pseudo-code implements a method to find the best feature and threshold for splitting a dataset in a Decision Tree.

Algorithm 1 Finding the Best Split

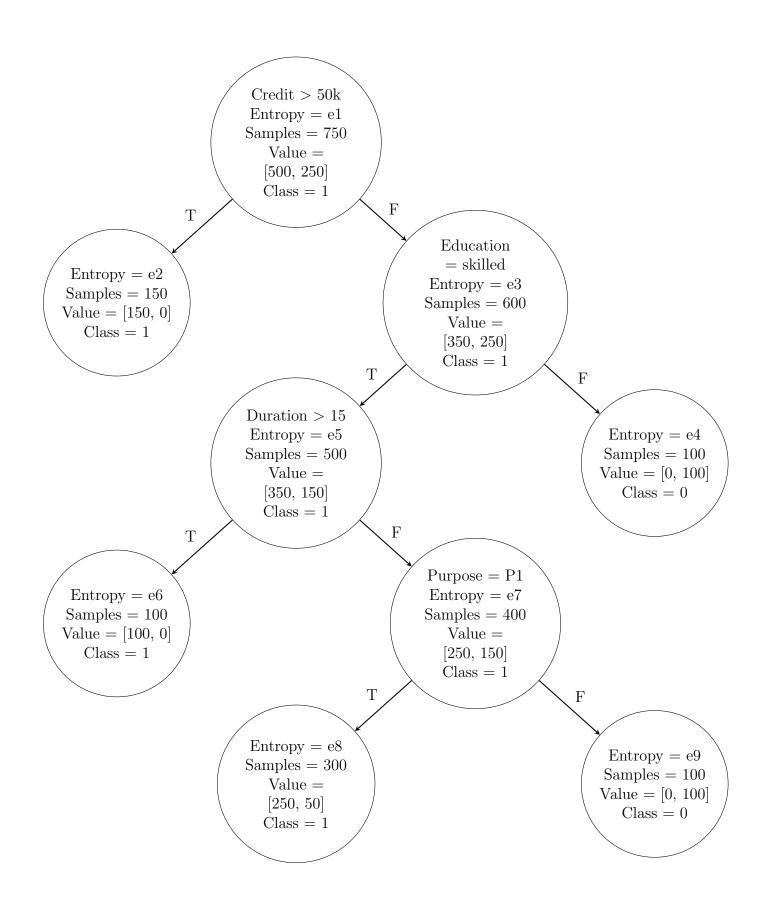
```
Require: Feature matrix X, target labels y
Ensure: Best feature, best threshold, and corresponding information gain
 1: Initialize best_gain \leftarrow 0, best_feature \leftarrow None, best_threshold \leftarrow None
 2: for each feature c in X do
        thresholds \leftarrow unique_values(X[:,c])
 3:
 4:
        for each threshold in thresholds do
            left \leftarrow X[:,c] < threshold
 5:
            right \leftarrow X[:,c] \ge \text{threshold}
 6:
            if len(y[left]) == 0 or len(y[right]) == 0 then
 7:
                Continue
 8:
            end if
 9:
10:
            gain \leftarrow compute\_information\_gain(y, y[left], y[right])
            if gain > best_gain then
11:
                                                                                            ▶ Fill in the blank
12:
13:
            end if
        end for
14:
15: end for
16: return best_feature, best_threshold, best_gain
```

What should replace the blank to correctly update the variables?

- \bullet a. best_gain \leftarrow gain, best_feature \leftarrow c, best_threshold \leftarrow threshold
- O b. Continue
- \bigcirc c. best_feature $\leftarrow c$
- \bigcirc d. gain $\leftarrow 0$

Trained Decision Tree and Prediction Process

The following graph illustrates the trained decision tree obtained after fitting the model to the dataset. Each node represents a decision point based on a specific feature, displaying the entropy, sample size, and class distribution.



- **Q. 8** In the decision tree graph, which of the entropies e_i , where $i \in \{1, 2, ..., 9\}$, will be equal to zero?
 - \bigcirc a. e_1, e_3, e_5, e_7
 - \bigcirc b. e_2, e_3, e_5, e_7
 - \bullet c. e_2, e_4, e_6, e_9
 - \bigcirc d. e_8, e_9
- **Q. 9** Using the trained decision tree and the information provided in the nodes, determine the confusion matrix. Which of the following correctly represents the values for TP, TN, FP, and FN?

	Predicted Positive	Predicted Negative
Actual Positive	$TP = _{}$	FN = -
Actual Negative	FP = -	TN = -

- \bigcirc a. TP = 300, TN = 200, FP = 100, FN = 150
- \bigcirc b. TP = 350, TN = 150, FP = 150, FN = 100
- \bullet c. TP = 500, TN = 200, FP = 50, FN = 0
- O d. TP = 500, TN = 200, FP = 0, FN = 50
- Q. 10 We have a new sample with the following features:
 - Age: 24
 - Geography: UK
 - Sex: Female
 - Credit: 35k\$
 - Education: skilled
 - Duration: 11

What should be the value of "Purpose" to ensure that the Decision Tree algorithm predicts a 'Good' target for this sample?

- a. P1
- O b. P2
- O c. P3
- O d. P4