
Data Structures and Algorithms
with applications in Machine Learning

- MCQ 1 -

NAME: GROUP:

Each Question: 1 Mark Duration: 30 Minutes

Completely fill the circles as shown: ## #

Answer sheet

Q1. # a.
b.
c.
d.

Q2. # a.
b.
c.
d.

Q3. # a.
b.
c.
d.

Q4. # a.
b.
c.
d.

Q5. # a.
b.
c.
d.

Q6. # a.
b.
c.
d.

Q7. # a.
b.
c.
d.

Q8. # a.
b.
c.
d.

Q9. # a.
b.
c.
d.

Q10. # a.
b.
c.
d.

1

The Quiz

Q. 1 Complete the missing part of the function to create a word index dictionary from a list of
documents.

The input is a list of documents, where each document is a list of tokens. For example:

documents = [["machine", "learning", "is", "fun"],

["learning", "models", "is", "important"]]

The function should return a dictionary where each unique word is assigned to a unique integer
starting from 1. For example:

{

"machine": 1,

"learning": 2,

"is": 3,

"fun": 4,

"models": 5,

"important": 6

}

def create_word_index(documents):

"""

Creates a word_index dictionary mapping unique tokens to unique integers.

Parameters:

documents (list of list of str): List of documents, where each document

is a list of tokens.

Returns:

dict: A dictionary mapping words to unique integers.

"""

word_index = {}

current_index = 1

for document in documents:

for token in document:

if token not in word_index:

word_index[token] = current_index

__________ # Fill in the blank

return word_index

What should replace the blank to correctly increment the current index?

a. current index = current index
b. current index -= 1
c. word index[token] += 1
 d. current index += 1

Q. 2 After applying the word index dictionary to convert a corpus into sequences, each sequence
represents a document as a list of integers.

Given the following corpus:

2

documents = [["machine", "learning", "is", "fun"],

["learning", "models", "is", "important"]]

And the word index dictionary:

{

"machine": 1,

"learning": 2,

"is": 3,

"fun": 4,

"models": 5,

"important": 6

}

What can we say about the nature of the elements in the resulting sequences?

 a. Each integer in the sequences corresponds to a unique word in the word index dic-
tionary.

b. Each sequence contains random integers generated independently of the word index.

c. The sequences are lists of tokens instead of integers.

d. Each integer in the sequences corresponds to the frequency of a word in the corpus.

Q. 3 In the modified algorithm for computing the co-occurrence matrix, we use a weight α(i, j)
instead of simply adding 1 when a word at index j is in the context of the center word at index
i.

The intuition behind α(i, j) is that words closer to the center word should contribute more
to the co-occurrence count, while words farther away should contribute less. This adjust-
ment reflects the observation that words closer in proximity often have a stronger semantic
relationship.

Below is the modified pseudo-code for the algorithm:

Algorithm 1 Getting the Co-Occurrence Matrix with Distance Weighting

Require: sequences (list of lists of integers), context size
Ensure: X (the co-occurrence matrix)
1: Initialize matrix X ∈MV,V (R) with zeros
2: for all sequence in sequences do
3: for all center word with index i in sequence do
4: for all context word with index j in context of center word do
5: if i ̸= j then
6: X[center word, context word]← X[center word, context word] + α(i, j)
7: end if
8: end for
9: end for
10: end for
11: return X

Which of the following best defines α(i, j)?

a. α(i, j) = |i− j|

3

 b. α(i, j) = 1
|i−j|

c. α(i, j) = max(0, i− j)

d. α(i, j) = 1

Q. 4 The following function computes the co-occurrence matrix with weighted contributions based
on the inverse distance between words. The formula for the left context has already been
implemented using i − j. Complete the blank in the right context to correctly compute the
inverse distance.

def get_occurence_matrix(sentences, context_size, vocabulary_size):

"""

This function creates the co-occurrence matrix from the corpus

composed of sentences.

"""

X = np.zeros((vocabulary_size, vocabulary_size))

N = len(sentences)

print("number of sentences to process:", N)

it = 0

for sentence in sentences:

it += 1

if it % 10000 == 0:

print("processed", it, "/", N)

n = len(sentence)

for i in range(n):

center word

w_i = sentence[i]

start = max(0, i - context_size)

end = min(n - 1, i + context_size)

left context side

for j in range(start, i):

context word

w_j = sentence[j]

inverse of distance between w_i and w_j

inverse_distance = 1. / (i - j)

Add the inverse of the distance to X[w_i, w_j]

X[w_i, w_j] += inverse_distance

right context side

for j in range(i + 1, end + 1):

context word

w_j = sentence[j]

inverse of distance between w_i and w_j

inverse_distance = __________ # Fill in the blank

Add the inverse of the distance to X[w_i, w_j]

X[w_i, w_j] += inverse_distance

return X

What should replace the blank ?

4

 a. 1./(j − i)

b. 1./(i− j)

c. 1.

d. 1./(i+ j)

Q. 5 Given the following small corpus and word index:

corpus = [["dog", "barked", "at", "the", "mailman"],

["the", "dog", "is", "friendly"]]

word_index = {"dog": 0, "barked": 1, "at": 2, "the": 3,

"mailman": 4, "is": 5, "friendly": 6}

Suppose the context window size is 3. Calculate X0,3, where Xij is the number of times the
word corresponding to index j ("the") appears in the context of the word corresponding to
index i ("dog").

a. X0,3 = 0

b. X0,3 = 1

 c. X0,3 = 2

d. X0,3 = 0

Q. 6 Recall the desired approximation:

logXij ≈ W T
i W̃j + bi + b̃j

The term W T
i W̃j represents the relationship between the word indexed by i and the word

indexed by j through their embeddings.

Assume that we have trained embeddings Wequity,Wmarket using this approximation and com-
pare the dot product of these embeddings to the dot product of one-hot vectors for the same
words.

Which of the following best describes the comparison?

 a. The dot product W T
equityWmarket from embeddings is positive and large, while the dot

product of their one-hot vectors is 0.

b. The dot product W T
equityWmarket from embeddings is 0, and the dot product of their

one-hot vectors is also 0.

c. The dot product W T
equityWmarket from embeddings is smaller than the dot product of

their one-hot vectors, which is positive.

d. The dot product W T
equityWmarket from embeddings is negative, while the dot product

of their one-hot vectors is 0.

5

Q. 7 Recall the cost function J :

J(θ) =
V∑
i=1

V∑
j=1

f(Xij)(logXij −W T
i W̃j − bi − b̃j)

2

The parameters to optimize are:

• W ∈MV,D(R), the first embedding matrix,

• W̃ ∈MV,D(R), the second embedding matrix,

• b ∈ RV , the bias vector for W ,

• b̃ ∈ RV , the bias vector for W̃ .

What is the total number of parameters to train in the model, assuming the vocabulary size
is V and the embedding dimension is D?

 a. 2V D + 2V

b. V D + V

c. V 2 +D2

d. 2V +D

Q. 8 Which of the following equations correctly represents the gradient ∇W̃j
J(W̃j) based on its

shape?

a. ∇W̃j
J(W̃j) = −2

∑V
i′=1 f(Xi′j)

(
logXi′j −W T

i′ W̃j − bi′ − b̃j

)
 b. ∇W̃j

J(W̃j) = −2
∑V

i′=1 f(Xi′j)
(
logXi′j −W T

i′ W̃j − bi′ − b̃j

)
Wi′

c. ∇W̃j
J(W̃j) = −2

∑V
i′=1 f(Xi′j)

(
logXi′j −W T

i′ W̃j − bi′ − b̃j

)
Wi′W

T
i′

d. ∇W̃j
J(W̃j) = 0

Q. 9 In the iterative optimization method where gradients are set to zero, the update equations for
the parameters W, W̃ , b, b̃ are given as:

W
(t+1)
i ←−

(
V∑

j′=1

f(Xij′)W̃
(t)
j′ W̃

(t)T

j′

)−1(V∑
j′=1

f(Xij′)(logXij′ − b
(t)
i − b̃

(t)
j′)W̃

(t)
j′

)
(1)

W̃
(t+1)
j ←−

(
V∑

i′=1

f(Xi′j)W
(t)
i′ W

(t)T

i′

)−1(V∑
i′=1

f(Xi′j)(logXi′j − b
(t)
i′ − b̃

(t)
j)W

(t)
i′

)
(2)

b
(t+1)
i ←−

(
V∑

j′=1

f(Xij′)

)−1(V∑
j′=1

f(Xij′)(logXij′ −W
(t)T

i W̃
(t)
j′ − b̃

(t)
j′)

)
(3)

b̃
(t+1)
j ←−

(
V∑

i′=1

f(Xi′j)

)−1(V∑
i′=1

f(Xi′j)(logXi′j −W
(t)T

i′ W̃
(t)
j − b

(t)
i′)

)
(4)

Which of the following best describes the interdependence of these update equations?

6

a. The update equations for W and W̃ are independent of b and b̃, so these parameters
can be updated in parallel.

b. The parameter updates depend only on the values of f(X) and logX, making the
updates independent of each other.

 c. Each parameter update depends on the values of the other parameters at the cur-
rent iteration t, making it necessary to update all parameters iteratively until convergence.

d. All parameters can be updated simultaneously in a single step without the need for
iteration, as the update equations guarantee immediate convergence.

Q. 10 The following pseudo-code implements the alternating least squares method to optimize the
loss function by iteratively updating the parameters W, W̃ , b, b̃. Complete the missing part of
the pseudo-code for updating W

(t+1)
i .

Algorithm 2 Training by Alternating Least Squares

Require: logX, f(X), number of epochs Nepochs

Ensure: W (Nepochs−1), W̃ (Nepochs−1), b(Nepochs−1), b̃(Nepochs−1) (The trained parameters)
1: Initialize randomly the parameters W (0), W̃ (0), b(0), b̃(0)

2: costs← []
3: for t = 0 to Nepochs − 1 do
4: Calculate the cost as a function of W (t), W̃ (t), b(t), b̃(t) and append to costs
5: for i = 0 to V − 1 do
6: W

(t+1)
i ← . . . ▷ Fill in the blank

7: end for
8: for j = 0 to V − 1 do

9: W̃
(t+1)
j ←

(∑V
i′=1 f(Xi′j)W

(t)
i′ W

(t)⊤
i′

)−1 (∑V
i′=1 f(Xi′j)(logXi′j − b

(t)
i′ − b̃

(t)
j)W

(t)
i′

)
10: end for
11: for i = 0 to V − 1 do

12: b
(t+1)
i ←

(∑V
j′=1 f(Xij′)

)−1 (∑V
j′=1 f(Xij′)(logXij′ −W

(t)⊤
i W̃

(t)
j′ − b̃

(t)
j′)
)

13: end for
14: for j = 0 to V − 1 do

15: b̃
(t+1)
j ←

(∑V
i′=1 f(Xi′j)

)−1 (∑V
i′=1 f(Xi′j)(logXi′j −W

(t)⊤
i′ W̃

(t)
j − b

(t)
i′)
)

16: end for
17: end for
18: return W (Nepochs−1), W̃ (Nepochs−1), b(Nepochs−1), b̃(Nepochs−1)

Which of the following correctly fills the blank for W
(t+1)
i ?

a. W
(t+1)
i ← W

(t)
i − η · ∇Wi

J(W
(t)
i)

b. W
(t+1)
i ←

(∑V
i′=1 f(Xi′j)W

(t)
i′ W

(t)T

i′

)−1 (∑V
i′=1 f(Xi′j)(logXi′j − b

(t)
i′ − b̃

(t)
j)W

(t)
i′

)
 c. W

(t+1)
i ←

(∑V
j′=1 f(Xij′)W̃

(t)
j′ W̃

(t)T

j′

)−1 (∑V
j′=1 f(Xij′)(logXij′ − b

(t)
i − b̃

(t)
j′)W̃

(t)
j′

)
d. W

(t+1)
i ← W

(t)
i + η · f(Xij) · W̃j

7

