
Data Structures and Algorithms
with applications in Machine Learning

- MCQ 1 -

NAME: GROUP:

Each Question: 1 Mark Duration: 30 Minutes

Completely fill the circles as shown: ## #

Answer sheet

Q1. # a.
# b.
# c.
# d.

Q2. # a.
# b.
# c.
# d.

Q3. # a.
# b.
# c.
# d.

Q4. # a.
# b.
# c.
# d.

Q5. # a.
# b.
# c.
# d.

Q6. # a.
# b.
# c.
# d.

Q7. # a.
# b.
# c.
# d.

Q8. # a.
# b.
# c.
# d.

Q9. # a.
# b.
# c.
# d.

Q10. # a.
# b.
# c.
# d.

1



The Quiz

Q. 1 Complete the missing part of the function to create a word index dictionary from a list of
documents.

The input is a list of documents, where each document is a list of tokens. For example:

documents = [["machine", "learning", "is", "fun"],

["learning", "models", "is", "important"]]

The function should return a dictionary where each unique word is assigned to a unique integer
starting from 1. For example:

{

"machine": 1,

"learning": 2,

"is": 3,

"fun": 4,

"models": 5,

"important": 6

}

def create_word_index(documents):

"""

Creates a word_index dictionary mapping unique tokens to unique integers.

Parameters:

documents (list of list of str): List of documents, where each document

is a list of tokens.

Returns:

dict: A dictionary mapping words to unique integers.

"""

word_index = {}

current_index = 1

for document in documents:

for token in document:

if token not in word_index:

word_index[token] = current_index

__________ # Fill in the blank

return word_index

What should replace the blank to correctly increment the current index?

# a. current index = current index
# b. current index -= 1
# c. word index[token] += 1
# d. current index += 1

Q. 2 After applying the word index dictionary to convert a corpus into sequences, each sequence
represents a document as a list of integers.

Given the following corpus:
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documents = [["machine", "learning", "is", "fun"],

["learning", "models", "is", "important"]]

And the word index dictionary:

{

"machine": 1,

"learning": 2,

"is": 3,

"fun": 4,

"models": 5,

"important": 6

}

What can we say about the nature of the elements in the resulting sequences?

# a. Each integer in the sequences corresponds to a unique word in the word index dic-
tionary.

# b. Each sequence contains random integers generated independently of the word index.

# c. The sequences are lists of tokens instead of integers.

# d. Each integer in the sequences corresponds to the frequency of a word in the corpus.

Q. 3 In the modified algorithm for computing the co-occurrence matrix, we use a weight α(i, j)
instead of simply adding 1 when a word at index j is in the context of the center word at index
i.

The intuition behind α(i, j) is that words closer to the center word should contribute more
to the co-occurrence count, while words farther away should contribute less. This adjust-
ment reflects the observation that words closer in proximity often have a stronger semantic
relationship.

Below is the modified pseudo-code for the algorithm:

Algorithm 1 Getting the Co-Occurrence Matrix with Distance Weighting

Require: sequences (list of lists of integers), context size
Ensure: X (the co-occurrence matrix)
1: Initialize matrix X ∈MV,V (R) with zeros
2: for all sequence in sequences do
3: for all center word with index i in sequence do
4: for all context word with index j in context of center word do
5: if i ̸= j then
6: X[center word, context word]← X[center word, context word] + α(i, j)
7: end if
8: end for
9: end for
10: end for
11: return X

Which of the following best defines α(i, j)?

# a. α(i, j) = |i− j|
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# b. α(i, j) = 1
|i−j|

# c. α(i, j) = max(0, i− j)

# d. α(i, j) = 1

Q. 4 The following function computes the co-occurrence matrix with weighted contributions based
on the inverse distance between words. The formula for the left context has already been
implemented using i − j. Complete the blank in the right context to correctly compute the
inverse distance.

def get_occurence_matrix(sentences, context_size, vocabulary_size):

"""

This function creates the co-occurrence matrix from the corpus

composed of sentences.

"""

X = np.zeros((vocabulary_size, vocabulary_size))

N = len(sentences)

print("number of sentences to process:", N)

it = 0

for sentence in sentences:

it += 1

if it % 10000 == 0:

print("processed", it, "/", N)

n = len(sentence)

for i in range(n):

# center word

w_i = sentence[i]

start = max(0, i - context_size)

end = min(n - 1, i + context_size)

# left context side

for j in range(start, i):

# context word

w_j = sentence[j]

# inverse of distance between w_i and w_j

inverse_distance = 1. / (i - j)

# Add the inverse of the distance to X[w_i, w_j]

X[w_i, w_j] += inverse_distance

# right context side

for j in range(i + 1, end + 1):

# context word

w_j = sentence[j]

# inverse of distance between w_i and w_j

inverse_distance = __________ # Fill in the blank

# Add the inverse of the distance to X[w_i, w_j]

X[w_i, w_j] += inverse_distance

return X

What should replace the blank ?
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# a. 1./(j − i)

# b. 1./(i− j)

# c. 1.

# d. 1./(i+ j)

Q. 5 Given the following small corpus and word index:

corpus = [["dog", "barked", "at", "the", "mailman"],

["the", "dog", "is", "friendly"]]

word_index = {"dog": 0, "barked": 1, "at": 2, "the": 3,

"mailman": 4, "is": 5, "friendly": 6}

Suppose the context window size is 3. Calculate X0,3, where Xij is the number of times the
word corresponding to index j ("the") appears in the context of the word corresponding to
index i ("dog").

# a. X0,3 = 0

# b. X0,3 = 1

# c. X0,3 = 2

# d. X0,3 = 0

Q. 6 Recall the desired approximation:

logXij ≈ W T
i W̃j + bi + b̃j

The term W T
i W̃j represents the relationship between the word indexed by i and the word

indexed by j through their embeddings.

Assume that we have trained embeddings Wequity,Wmarket using this approximation and com-
pare the dot product of these embeddings to the dot product of one-hot vectors for the same
words.

Which of the following best describes the comparison?

# a. The dot product W T
equityWmarket from embeddings is positive and large, while the dot

product of their one-hot vectors is 0.

# b. The dot product W T
equityWmarket from embeddings is 0, and the dot product of their

one-hot vectors is also 0.

# c. The dot product W T
equityWmarket from embeddings is smaller than the dot product of

their one-hot vectors, which is positive.

# d. The dot product W T
equityWmarket from embeddings is negative, while the dot product

of their one-hot vectors is 0.
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Q. 7 Recall the cost function J :

J(θ) =
V∑
i=1

V∑
j=1

f(Xij)(logXij −W T
i W̃j − bi − b̃j)

2

The parameters to optimize are:

• W ∈MV,D(R), the first embedding matrix,

• W̃ ∈MV,D(R), the second embedding matrix,

• b ∈ RV , the bias vector for W ,

• b̃ ∈ RV , the bias vector for W̃ .

What is the total number of parameters to train in the model, assuming the vocabulary size
is V and the embedding dimension is D?

# a. 2V D + 2V

# b. V D + V

# c. V 2 +D2

# d. 2V +D

Q. 8 Which of the following equations correctly represents the gradient ∇W̃j
J(W̃j) based on its

shape?

# a. ∇W̃j
J(W̃j) = −2

∑V
i′=1 f(Xi′j)

(
logXi′j −W T

i′ W̃j − bi′ − b̃j

)
# b. ∇W̃j

J(W̃j) = −2
∑V

i′=1 f(Xi′j)
(
logXi′j −W T

i′ W̃j − bi′ − b̃j

)
Wi′

# c. ∇W̃j
J(W̃j) = −2

∑V
i′=1 f(Xi′j)

(
logXi′j −W T

i′ W̃j − bi′ − b̃j

)
Wi′W

T
i′

# d. ∇W̃j
J(W̃j) = 0

Q. 9 In the iterative optimization method where gradients are set to zero, the update equations for
the parameters W, W̃ , b, b̃ are given as:

W
(t+1)
i ←−

(
V∑

j′=1

f(Xij′)W̃
(t)
j′ W̃

(t)T

j′

)−1( V∑
j′=1

f(Xij′)(logXij′ − b
(t)
i − b̃

(t)
j′ )W̃

(t)
j′

)
(1)

W̃
(t+1)
j ←−

(
V∑

i′=1

f(Xi′j)W
(t)
i′ W

(t)T

i′

)−1( V∑
i′=1

f(Xi′j)(logXi′j − b
(t)
i′ − b̃

(t)
j )W

(t)
i′

)
(2)

b
(t+1)
i ←−

(
V∑

j′=1

f(Xij′)

)−1( V∑
j′=1

f(Xij′)(logXij′ −W
(t)T

i W̃
(t)
j′ − b̃

(t)
j′ )

)
(3)

b̃
(t+1)
j ←−

(
V∑

i′=1

f(Xi′j)

)−1( V∑
i′=1

f(Xi′j)(logXi′j −W
(t)T

i′ W̃
(t)
j − b

(t)
i′ )

)
(4)

Which of the following best describes the interdependence of these update equations?
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# a. The update equations for W and W̃ are independent of b and b̃, so these parameters
can be updated in parallel.

# b. The parameter updates depend only on the values of f(X) and logX, making the
updates independent of each other.

# c. Each parameter update depends on the values of the other parameters at the cur-
rent iteration t, making it necessary to update all parameters iteratively until convergence.

# d. All parameters can be updated simultaneously in a single step without the need for
iteration, as the update equations guarantee immediate convergence.

Q. 10 The following pseudo-code implements the alternating least squares method to optimize the
loss function by iteratively updating the parameters W, W̃ , b, b̃. Complete the missing part of
the pseudo-code for updating W

(t+1)
i .

Algorithm 2 Training by Alternating Least Squares

Require: logX, f(X), number of epochs Nepochs

Ensure: W (Nepochs−1), W̃ (Nepochs−1), b(Nepochs−1), b̃(Nepochs−1) (The trained parameters)
1: Initialize randomly the parameters W (0), W̃ (0), b(0), b̃(0)

2: costs← []
3: for t = 0 to Nepochs − 1 do
4: Calculate the cost as a function of W (t), W̃ (t), b(t), b̃(t) and append to costs
5: for i = 0 to V − 1 do
6: W

(t+1)
i ← . . . ▷ Fill in the blank

7: end for
8: for j = 0 to V − 1 do

9: W̃
(t+1)
j ←

(∑V
i′=1 f(Xi′j)W

(t)
i′ W

(t)⊤
i′

)−1 (∑V
i′=1 f(Xi′j)(logXi′j − b

(t)
i′ − b̃

(t)
j )W

(t)
i′

)
10: end for
11: for i = 0 to V − 1 do

12: b
(t+1)
i ←

(∑V
j′=1 f(Xij′)

)−1 (∑V
j′=1 f(Xij′)(logXij′ −W

(t)⊤
i W̃

(t)
j′ − b̃

(t)
j′ )
)

13: end for
14: for j = 0 to V − 1 do

15: b̃
(t+1)
j ←

(∑V
i′=1 f(Xi′j)

)−1 (∑V
i′=1 f(Xi′j)(logXi′j −W

(t)⊤
i′ W̃

(t)
j − b

(t)
i′ )
)

16: end for
17: end for
18: return W (Nepochs−1), W̃ (Nepochs−1), b(Nepochs−1), b̃(Nepochs−1)

Which of the following correctly fills the blank for W
(t+1)
i ?

# a. W
(t+1)
i ← W

(t)
i − η · ∇Wi

J(W
(t)
i )

# b. W
(t+1)
i ←

(∑V
i′=1 f(Xi′j)W

(t)
i′ W

(t)T

i′

)−1 (∑V
i′=1 f(Xi′j)(logXi′j − b

(t)
i′ − b̃

(t)
j )W

(t)
i′

)
# c. W

(t+1)
i ←

(∑V
j′=1 f(Xij′)W̃

(t)
j′ W̃

(t)T

j′

)−1 (∑V
j′=1 f(Xij′)(logXij′ − b

(t)
i − b̃

(t)
j′ )W̃

(t)
j′

)
# d. W

(t+1)
i ← W

(t)
i + η · f(Xij) · W̃j
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