Data Structures and Algorithms
with applications in Machine Learning
-MCQ 1 -

NAME: GROUP:

Each Question: 1 Mark Duration: 30 Minutes

Completely fill the circles as shown: OO@QO

Answer sheet

QL. O a. Q6. O a.
O b O b
O c O ec
O d O d
Q2. O a. Q7. O a
O b O b
O c O ec
O d O d
Q3. O a. Q8. O a
O b O b
O c O ec
O d O d
Q4. O a. Q9. O a
O b O b
O c O e
O d O d
Q5. O a Q10. O a.
O b. O b
O C. O C.
O d O d

The Quiz

Q. 1 Complete the missing part of the function to create a word_index dictionary from a list of
documents.

The input is a list of documents, where each document is a list of tokens. For example:

documents = [["machine", "learning", "is", "fun"],
["learning", "models", "is", "important"]]

The function should return a dictionary where each unique word is assigned to a unique integer
starting from 1. For example:

{
"machine": 1,
"learning": 2,
"is": 3,
"fun": 4,
"models": 5,
"important": 6

def create_word_index(documents) :
nnn

Creates a word_index dictionary mapping unique tokens to unique integers.

Parameters:
documents (list of list of str): List of documents, where each document
is a list of tokens.

Returns:
dict: A dictionary mapping words to unique integers.
nmnn
word_index = {}
current_index = 1

for document in documents:
for token in document:
if token not in word_index:
word_index[token] = current_index
Fill in the blank

return word_index

What should replace the blank to correctly increment the current_index?

O a. current_index = current_index
(O b. current_index -= 1

O c. word_index[token] += 1

O d. current_index += 1

Q. 2 After applying the word _index dictionary to convert a corpus into sequences, each sequence
represents a document as a list of integers.

Given the following corpus:

documents = [["machine", "learning", "is", "fun"],
["learning", "models", "is", "important"]]

And the word_index dictionary:

{
"machine": 1,
"learning": 2,
"ig": 3,
"fun": 4,
"models": 5,
"important": 6

b

What can we say about the nature of the elements in the resulting sequences?

O a. Each integer in the sequences corresponds to a unique word in the word_index dic-
tionary.

O b. Each sequence contains random integers generated independently of the word_index.
O c. The sequences are lists of tokens instead of integers.

O d. Each integer in the sequences corresponds to the frequency of a word in the corpus.

In the modified algorithm for computing the co-occurrence matrix, we use a weight a(i, j)
instead of simply adding 1 when a word at index j is in the context of the center word at index
i.

The intuition behind «(i,j) is that words closer to the center word should contribute more
to the co-occurrence count, while words farther away should contribute less. This adjust-
ment reflects the observation that words closer in proximity often have a stronger semantic
relationship.

Below is the modified pseudo-code for the algorithm:

Algorithm 1 Getting the Co-Occurrence Matrix with Distance Weighting

Require: sequences (list of lists of integers), context_size
Ensure: X (the co-occurrence matrix)

1
2
3
4:
5:
6
7
8
9

. Initialize matrix X € My, (R) with zeros
: for all sequence in sequences do

for all center_word with index ¢ in sequence do
for all context_word with index j in context of center_word do
if 7 # j then
X [center_word, context_word] <— X [center_word, context_word] + «(i, j)
end if
end for
end for

10: end for
11: return X

Which of the following best defines «(3, j)?

O a afi,j)=li—jl

O d a(i,j)=1

Q. 4 The following function computes the co-occurrence matrix with weighted contributions based
on the inverse distance between words. The formula for the left context has already been
implemented using ¢ — j. Complete the blank in the right context to correctly compute the
inverse distance.

def get_occurence_matrix(sentences, context_size, vocabulary_size):
nmnn
This function creates the co-occurrence matrix from the corpus

composed of sentences.
nnn

X = np.zeros((vocabulary_size, vocabulary_size))
N = len(sentences)
print ("number of sentences to process:", N)
it =0
for sentence in sentences:
it += 1
if it % 10000 == O:
print ("processed", it, "/", N)
n = len(sentence)
for i in range(n):
center word
w_i = sentencel[i]
start = max(0, i - context_size)
end = min(n - 1, i + context_size)
left context side
for j in range(start, i):
context word
w_j = sentencel[j]
inverse of distance between w_i and w_]j
inverse_distance = 1. / (i - j)
Add the inverse of the distance to X[w_i, w_jl
X[w_i, w_j] += inverse_distance
right context side
for j in range(i + 1, end + 1):
context word
w_j = sentencel[j]
inverse of distance between w_i and w_]j
inverse_distance = __________ # Fill in the blank
Add the inverse of the distance to X[w_i, w_jl
X[w_i, w_j] += inverse_distance
return X

What should replace the blank ?

Q. 5

O a 1/(G—1i)
O b 1/(i—j)
O ¢l

O d 1./(i+7)

Given the following small corpus and word_index:

corpus = [["dog", "barked", "at", "the", "mailman"],
[llthell’ lldogll’ "iS", "frlendly"]]

word_index = {"dog": 0, "barked": 1, "at": 2, "the": 3,
"mailman": 4, "is": 5, "friendly": 6}

Suppose the context window size is 3. Calculate Xy 3, where X;; is the number of times the
word corresponding to index j ("the") appears in the context of the word corresponding to
index ¢ ("dog").

O a. X073 =0
O b Xo’g = 1
O C. X073 =2

O d X073 - O

Recall the desired approximation:
log X;; ~ WiTI/T/} +0; + Ej

The term VVZ.TWJ- represents the relationship between the word indexed by ¢ and the word
indexed by j through their embeddings.

Assume that we have trained embeddings Wequity, Wmarket Using this approximation and com-
pare the dot product of these embeddings to the dot product of one-hot vectors for the same
words.

Which of the following best describes the comparison?

O a. The dot product We:guitmearket from embeddings is positive and large, while the dot

product of their one-hot vectors is 0.

O b. The dot product WL . Wi aiet from embeddings is 0, and the dot product of their

equity
one-hot vectors is also 0.

O c. The dot product Wg(;uitmearket from embeddings is smaller than the dot product of

their one-hot vectors, which is positive.

O d. The dot product WL .. Wi ket from embeddings is negative, while the dot product

equity
of their one-hot vectors is 0.

Q. 7 Recall the cost function J:
Y) ~
= Z Zf ij IOg ij VVZTW] _ bz _ bj)2
=1]:1

The parameters to optimize are:

e W € My p(R), the first embedding matrix,

e W € My p(R), the second embedding matrix,
e b € RY, the bias vector for W,

e b e RY, the bias vector for W.

What is the total number of parameters to train in the model, assuming the vocabulary size
is V' and the embedding dimension is D?

O a. 2VD+2V
O b.VD+V
O ¢ V24 D?

O d.2V+D

Q. 8 Which of the following equations correctly represents the gradient VW],J (VT/j) based on its
shape?

O a Vi, J(Wy) = =250V, [(Xiy) (log Xy = WEW; = by —)
O b Vg JOV) = -2V f(X,)<10gXi/j — WIW; — by —Bj> W,
O o Vy, J(W) = =200, f(Xey) (log Xy = WEW; = by = b)) W}

O d Vy J(W;)=0

Q. 9 In the iterative optimization method where gradients are set to zero, the update equations for
the parameters W, W, b, b are given as:

1% -1 sy
Wit (Z f(Xij/)W].(f)Wj(f)T) <Z F(X) (log X5 — b — B%W;f’) (1)
j'=1 j'=1
~ V T 71 V ~
WD (Z F Xy WP) (Z Xy7)(log Xy — b _bgﬂ)wﬁ) (2)
i'=1 =1
1% Ly .)
- <Z f(xij/)) (Z F(Xi5) (log Xy — W WY —bg.f))) (3)
j'=1 §'=1
. v -1 sv
e <Z f(Xi/j>> (Z F(Xi;)(log Xy — W, W(t bt))> (4)
i'=1 =1

Which of the following best describes the interdependence of these update equations?

O a. The update equations for W and W are independent of b and b, so these parameters
can be updated in parallel.

O b. The parameter updates depend only on the values of f(X) and log X, making the
updates independent of each other.

O c¢. Each parameter update depends on the values of the other parameters at the cur-
rent iteration ¢, making it necessary to update all parameters iteratively until convergence.

O d. All parameters can be updated simultaneously in a single step without the need for
iteration, as the update equations guarantee immediate convergence.

. e following pseudo-code implements the alternating least squares method to optimize the

10 The followi do-code impl ts the alt ting least s thod t timize th
loss function by iteratively updatin% the parameters W, W b,b. Complete the missing part of
the pseudo-code for updating VVZ-(tJrl :

Algorithm 2 Training by Alternating Least Squares

Require: log X, f(X), number of epochs Nepochs

Ensure: W Vepochs=1) [/ (Nepochs—1) - j(Nepochs—1) p(Nepochs—1) (The trained parameters)
1: Initialize randomly the parameters W©_ W © p© p0)
2: costs + |]
3: for t =0 to Nepochs — 1 do

Calculate the cost as a function of W®, W® p® p® and append to costs
fori=0toV —1do

Wit > Fill in the blank
end for

for j=0toV —1do
~ 71 g
W o (S0 FXa)WOWOT) (VL F(Xy)(log Xy — b = 0y wi")

J
10: end for

11: fori=0toV —1do

12: b <Z¥:1 f(Xz'j’)> 1 (Zyﬂ f(Xij)(log X — W@-(t)TWj(f) - B;-f)))
13: end for

14: for j=0toV —1do X

15: E;t—H) < (szl f(XZ/j)> (Z}’/:l f(Xz/])(IOg Xi/j — VVi(/t)TWj(t) — bif))>
16: end for

17: end for

18: return W(Ncpochs_l)’ W(Ncpochs_l)’ b(NCpochs_l)’ E(Ncpochs_l)

Which of the following correctly fills the blank for W7

O a WM e« w? -y Vi WD)

)

-1 ~
b W e (S S X WEOWOT) (0 F(Xiy)(log Xy — b =)W)

O

- - -1 ~ -
O I/I/i(t+1)<—(Z}lef(Xij,)VI/].(,t)Wj.(,t)T> (zjv,zl f(xij,)(logxij,—bgﬂ—bﬁ))wﬁ))
O

d W w4y f(Xy) - W

