
Decision Trees and Random Forest

Hachem Madmoun

December 16, 2024

Outline 2

Supervised Learning: a quick review
Setting up the objective
Bias-variance tradeoff

Decision Tree Model
Introduction
Information Theory
Information Gain
Pseudocode

Model Evaluation and Model Selection
K-fold cross-validation for assessing model performance
Decision Tree on Iris dataset

Random Forest
Combining multiple decision trees via Random Forest

Supervised Learning: a quick review

Setting up the objective

�

Supervised Learning - Context - 5

▶ Data: A dataset of random pairs {(Xi, Yi)1≤i≤n} over
X × Y (typically X = RD and Y = {0, 1}).

▶ The pairs {(Xi, Yi)1≤i≤n} are i.i.d. and follow an unknown
distribution P.

▶ A supervised algorithm is an algorithm that aims to build
a predictor (i.e, a function Φ : X −→ Y) which minimizes
some risk.

▶ To define the risk, we need first to define a loss function
(i.e, a function l : Y × Y −→ R that measures the
”distance” between the the output of the predictor and the
true labels (Yi)1≤i≤n).

Supervised Learning - Minimizing a risk - 6

▶ For the loss function, we typically choose for all
(y, y′) ∈ Y × Y:

lRegression(y, y
′) = ||y−y′||2 and lClassification(y, y

′) = δy ̸=y′

▶ We then define the following risk associated to Φ

RP(Φ) = EP[l(Y,Φ(X)]

▶ Our objective is then:

Finding ϕ∗
P = argmin

Φ∈F(X ,Y)
EP[l(Y,Φ(X)] = argmin

Φ∈F(X ,Y)
RP(Φ)

▶ Since P is unknown, we optimize the empirical risk Rn(Φ):

Rn(Φ) =
1

n

n∑
i=1

l(Yi,Φ(Xi))

Bias-variance tradeoff

�

Supervised Learning - Bias-variance tradeoff - 8

▶ In practice, we choose G a subset of F(X ,Y) and we
minimise the empirical risk over G.

▶ We define the Φ∗
P,G the theoretical optimal predictor over

the subset G:

Φ∗
P,G = argmin

Φ∈G
EP[l(Y,Φ(X)] = argmin

Φ∈G
RP(Φ)

▶ We also define the Φ̂n
G the empirical optimal predictor over

the subset G:

Φ̂n
G = argmin

Φ∈G

1

n

n∑
i=1

l(Yi,Φ(Xi)) = argmin
Φ∈G

Rn(Φ)

Supervised Learning - Bias-variance tradeoff - 9

▶ The excess risk of Φ̂n
G can be decomposed as follows

RP(Φ̂
n
G)−RP(ϕ

∗
P) = RP(Φ̂

n
G)−RP(Φ

∗
P,G)︸ ︷︷ ︸

Variance

+RP(Φ
∗
P,G)−RP(ϕ

∗
P)︸ ︷︷ ︸

bias

▶ Bias-variance tradeoff:
▶ If the ”complexity” of G is too big, it results in high

variance : overfitting
▶ If the ”complexity” of G is too small, it results in high bias :

underfitting

▶ In the literature, the complexity of G is measured by the
Vapnik–Chervonenkis dimension (VG) or the Rademacher
complexity measure.

Supervised Learning - Oracle Inequality - 10

▶ Vapnik-Chervonenkis Theorem If Y = {0, 1} and
l : Y × Y −→ {0, 1} is the classification loss. Then, for all
ϵ > 0, with probability at least 1− ϵ:

RP(Φ̂
n
G)−RP(Φ

∗
P,G) ≤ 2

√
2VG ln[4(2n+ 1)ϵ−1]

n

▶ The proof of the above stated theorem remains the same if
G depends on the dataset.

▶ The next section will present the Decision Tree algorithm,
which is one way of defining G based on the dataset.

Decision Tree Model

Introduction

�

Intuition 13

▶ The Decision Tree (DT) algorithm is an attractive model
if we care about interpretability.

▶ As the name decision tree suggests, we can think of this
model as breaking down our data by making a decision
based on asking a series of questions.

(a) Features and Labels (b) Decision Tree graph

A high level description of the algorithm 14

▶ The DT algorithm is basically just a bunch of nested
if-statements on the input features (also called attributes)
in the training dataset.

▶ The decision algorithm:
▶ We start at the tree root (with the whole dataset)
▶ Then we split the dataset on the attribute that results in

the largest Information Gain (IG).
▶ We iterate the splitting procedure at each child node until

the leaves are pure (which means that the samples at the
leaves belong to the same class)

▶ A very deep tree is prone to overfitting. To avoid that, we
set a limit for the maximal depth of the tree.

Building Decision Trees 15

▶ First, we need to define an objective function that we want
to optimize (Information Gain).

▶ Then, at each iteration, two challenges arise when trying to
choose the best split.
▶ How do we choose the best attribute responsible for the

split ?
▶ How do we choose the threshold when splitting based on

the ”best attribute” ?

Information Theory

�

Entropy - Definition - 17

▶ Let Y be a random variable taking values in the finite set
Y.

▶ Let’s denote p(y) = P(Y = y)

▶ In informarion theory, the quantity

I(y) = log2(
1

p(y)
)

can be interpreted as a quantity of information carried by
the occurence of y (sometimes called self-information)

▶ So, the entropy is defined as the expected amount of
information of the random variable Y :

H(Y) = Ep(y)[I(Y)] = −
∑
y∈Y

p(y) log2(p(y))

Entropy - Example - 18

▶ Let’s take an example of a Bernoulli distribution Y ∼ B(p)
▶ The entropy of Y as a function of p is :

H(p) = −p log2(p)− (1− p) log2(1− p)

▶ p = 0.5 yields maximum entropy.

▶ So, the entropy is a measure of how much information we
get from finding out the value of the random variable.

Entropy - Proposition - 19

▶ We have the following inequalities:

H(Y) ≥ 0 with equality if Y is constant a.s

H(Y) ≤ log2(Card(Y))

▶ Proof of the first point:
▶ Since ∀y ∈ Y p(y) ≤ 1 then:

H(Y) =
∑
y∈Y

−p(y) log2(p(y))︸ ︷︷ ︸
≥0

≥ 0

▶ With equality iff ∀y ∈ Y p(y) log2(y) = 0, which proves the
first point.

Kullback-Leibler divergence - Definition - 20

▶ To prove the second point, we need to introduce the
Kullback-Leibler divergence.

▶ Let p and q be two finite distributions on Y.

▶ The Kullback-Leibler divergence Kullback-Leibler
divergence between p and q is defined as follows:

DKL (p||q) = EY∼p

[
log

p(Y)

q(Y)
)

]
=

∑
y∈Y

p(y) log
p(y)

q(y)

=
∑
y∈Y

p(y)

q(y)

(
log

p(y)

q(y)

)
q(y)

= EY∼q

[
p(Y)

q(Y)
log

p(Y)

q(Y)
)

]

Kullback-Leibler divergence - Proposition - 21

▶ Proposition:

DKL (p||q) ≥ 0 and equality holds iff p = q

▶ Proof:

DKL (p||q) = EY∼q

[
p(Y)

q(Y)
log

p(Y)

q(Y)
)

]
(definition)

≥ EY∼q

[
p(Y)

q(Y)

]
logE

[
p(Y)

q(Y)
)

]
(Jensen Inequality)

= 0 (since EY∼q

[
p(Y)

q(Y)

]
= 1)

▶ Furthermore, DKL (p||q) = 0 iff there is an equality in
Jensen’s inequality, which means p = q.

Back to Entropy - Proposition 2 - 22

▶ We want to prove the proposition H(Y) ≤ log2(Card(Y)

▶ We have for all distributions p and q:

DKL (p||q) =
∑
y∈Y

p(y) log
p(y)

q(y)
(definition)

= −
∑
y∈Y

p(y) log(q(y))−

−
∑
y∈Y

p(y) log(p(y))


= −

∑
y∈Y

p(y) log(q(y))−H(Y)

▶ Hence, by choosing ∀y ∈ Y q∗(y) = 1
Card(Y) :

H(Y) = log(Card(Y))−DKL (p||q∗)︸ ︷︷ ︸
≥0

≤ log2(Card(Y))

Information Gain

�

Information Gain - Definition - 24

▶ We define the information gain at a split on the
attribute c as follows:

IG(Dp, c) = I(Dp)−
Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

▶ Dp refers to the dataset of the parent.
▶ Dleft and Dright are the datasets of the left and right child

nodes. (For simplicity, most libraries only implement binary
decision trees).

▶ I is the impurity measure.
▶ Np is the total number of samples at the parent node.
▶ Nleft and Nright are the total number of samples at the right

and left child nodes.

Different impurity measures 25

▶ The three impurity measures or splitting criteria that are
commonly used in binary decision trees are Gini Impurity
(IG), Entropy (IH), and the Classification Error (IE).

▶ Let’s denote pmk the proportion of the samples that belong
to the class m ∈ {1, . . . ,M} for a particular node k. We
define the above stated impurities as follows:

IG(k) = −
M∑

m=1

pmk (1− pmk)

IH(k) = −
M∑

m=1

pmk log2(p
m
k)

IE(k) = 1− max
1≤m≤M

pmk

Different impurity measures - Figure - 26

A simple example - Description - 27

Let’s consider the following example

▶ We want to predict whether a person is going to the good
place (Y = 1) or to the bad place (Y = 0) based on 4
features:

▶ X1 ∈ {0, 1} is whether the person has ever used the
expression ”au jour d’aujourd’hui” (X1 = 0 if it’s the case)

▶ X2 is a consequentialist score (in [0, 100]) reflecting the
number of good things the person has done on earth.

▶ X3 is the number of times the person has lied (in millions).

▶ X4 ∈ {0, 1} is whether the person is from CERMICS or
not. (X4 = 1 if it’s the case)

A simple example - Dataset - 28

▶ We end up with the following small dataset of 10 samples.

▶ Let’s use the entropy as the impurity measure.

▶ We have at the root:

I(Dp) = H(Y) = −1

2
log2(

1

2
)− 1

2
log2(

1

2
) = 1

A simple example - split on CERMICS column - 29

Let’s split on the attribute ”CERMICS”.

I(Dleft) = H(Y |CERMICS = 0) = 1

I(Dright) = H(Y |CERMICS = 1) = 1

A simple example - split on CERMICS column - 30

▶ If we split on the attribute : ”CERMICS”, we obtain the
following information gain :

IG(Dp, ”CERMICS”) = I(Dp)−
Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

= 1− 8

10
× 1− 2

10
× 1

= 0

▶ We conclude that there is absolutely nothing to gain from
splitting on the ”CERMICS” attribute.

A simple example - split on FE column - 31

▶ If we split on the attribute : ”Forbidden Expression” (FE),
we obtain the following information gain :

IG(Dp, ”FE”) = 1− 2

10
× 0− 8

10
× 0.95 = 0.24

Finding the best split for a particular column 32

▶ In the last example, we made it easy : ”CERMICS” and
”FE” columns have only two possible values each.

▶ For continuous data, we can find some rules that lead to a
smaller set of possible values.

▶ So to find the best split for a continuous attribute X:
▶ We sort the values of the attribute in order, and sort the

target Y in the corresponding way.
▶ We find all the boundary points (i.e, where Y changes from

one value to an other).
▶ We calculate the information gain when splitting at each

boundary.
▶ We keep the split which gives the highest information gain.

Example - Split on ”Lies” - 33

▶ We can see that the best split (with the highest
information gain) is still very low.

▶ For the first split (at the root), it is better to do it on FE
column as the information gain is 0.24.

Example - Split on ”Lies” - 34

▶ After some iterations, splitting on ”Lies” becomes
interesting.

Leaf Nodes 35

When do we stop splitting ?

▶ If a node is pure (all the samples of this node belong to the
same category), we make it a leaf node and predict the
class of the samples.

▶ If the maximum information gain = 0, we gain nothing
from splitting, we make the node a leaf node and predict
the most likely class (majority vote).

▶ To avoid overfitting, we set a limit to the depth of the tree.

Pseudocode

�

Pseudocode - Part 1 - 37

Training Algorithm (rough outline)

1 def f i t (X,Y) :
2 max IG = 0
3 Be s t a t t r i bu t e = None
4 for c in columns :
5 cond i t i on = f i n d s p l i t (X, Y, c) # l a t e r
6 Y l e f t = Y[X[c] meets cond i t i on]
7 Y right = Y[X[c] does not meet cond i t i on]
8 IG = Entropy (Y) − p(l e f t) ∗Entropy (Y l e f t)

− p(r i g h t) ∗Entropy (Y r ight)
9 I f IG > max IG :

10 max IG = IG
11 Be s t a t t r i bu t e = c
12 . . .

Pseudocode - Part 2 - 38

Training Algorithm (Recursiveness)

1 def f i t (X,Y) :
2 # We f ind the b e s t a t t r i b u t e
3 max IG = . . .
4 Be s t a t t r i bu t e = . . .
5 # Cal l f i t r e c u r s i v e l y
6 X le f t , Y l e f t , X right , Y r ight = s p l i t by

best a t t r i b u t e
7 s e l f . l e f t n o d e = TreeNode ()
8 s e l f . l e f t n o d e . f i t (X l e f t , Y l e f t)
9 s e l f . r i gh t node = TreeNode ()

10 s e l f . r i gh t node . f i t (X right , Y r ight)

Basic example after training 39

By applying the training algorithm on the basic example, we
obtain the following tree:

Model Evaluation and Model Selection

K-fold cross-validation for assessing model
performance

�

The classic holdout method 42

A popular approach for estimating the generalization
performance of machine learning models is the holdout
cross-validation

K-fold cross-validation 43

As the performance of the holdout method is sensitive to how
we partition the dataset. A more robust technique for
performance estimation is the K-fold cross validation

Decision Tree on Iris dataset

�

DT on Iris Dataset - Data - 45

▶ The data set consists of 50 samples from each of three
species of Iris (Iris setosa, Iris virginica and Iris versicolor),
so 150 total samples.

▶ Four features were measured from each sample: the length
and the width of the sepals and petals, in centimeters.

(c) Setosa (d) Versicolor (e) Virginica

DT on Iris Dataset - Model Selection - 46

▶ To find the optimal set of hyperparameters, we use grid
search, which is a brute-force exhaustive search paradigm
where we specify a list of values for different
hyperparameters, and the algorithm evaluate the model
performance (via cross validation) for each combination of
hyperparameters.

▶ For decision tree algorithm, we tuned the following two
hyperparameters:
▶ Impurity measure with the two possibilities : ”gini” and

”entropy”
▶ The depth of the tree with values in

[1, 2, 3, 4, 5, 10, 20, 30, 40]

▶ As a result, we obtain the following best parameters : best
impurity : ’gini’ and best depth : 5

DT on Iris Dataset - Bias and Variance Problems - 47

By plotting the model training and validation accuracies as
functions of the training set size, we can detect whether the
model suffers from high variance or high bias, and whether the
collection of more data could help address this problem.

(f) Accuracy vs training set size (g) Accuracy vs max depth

Random Forest

Combining multiple decision trees via Random
Forest

�

The Random Forest Algorithm 50

The Random Forest algorithm aims to average multiple decision
trees that individually suffer from overfitting, in order to build
a model with better generalization performance. It consists in
the following steps:

1. Randomly choose n samples from the training set with
replacement (bootstrap sample).

2. Grow a decision tree from the bootstrap sample. And at
each node:
▶ Randomly select d attributes without replacement.
▶ Split the node using the attribute that provides the best

split according to maximizing the information gain.

3. Repeat the firs two steps K times.

4. Use the K trees to assign the class label by majority
voting.

Pseudocode 51

Random Forest Training

1 def f i t (X,Y) :
2 models = []
3 for k in range (K) :
4 X k , Y k = sample with rep lacement (X, Y)
5 model = Dec i s ionTree ()
6 while not at te rmina l node and not reached

max depth :
7 s e l e c t randomly d a t t r i b u t e s
8 choose best s p l i t from the d a t t r i b u t e s
9 add s p l i t to model

10 models . append (model)

The Random Forest Algorithm - Hyperparameters - 52

▶ The sample size n of the bootstrap controls the
bias-variance tradeoff of the Random Forest.

▶ In most libraries (including scikit-learn), the size of the
bootstrap sample is chosen to be equal to the number of
samples in the training dataset.

▶ For the number of attributes d at each split, a reasonable
default value (used in scikit-learn) is d =

√
D where D is

the number of attributes in the dataset.

▶ So, one big advantage of Random Forest is that it requires
very little tuning: The main hyperparameter to tune is the
number of trees.

The Random Forest Algorithm on the Iris dataset 53

▶ By tuning the number of trees as a hyperparameter for the
Iris dataset, we get 20 as the best value, which is confirmed
by the following curve.

Thank you for your attention ⌣

	Outline
	Supervised Learning: a quick review
	Setting up the objective
	Bias-variance tradeoff

	Decision Tree Model
	Introduction
	Information Theory
	Information Gain
	Pseudocode

	Model Evaluation and Model Selection
	K-fold cross-validation for assessing model performance
	Decision Tree on Iris dataset

	Random Forest
	Combining multiple decision trees via Random Forest

