Algorithms and Data Structures with Applications in Machine Learning

The Stable Matching Problem and The Gale-Shapley algorithm

December 8, 2024

Outline

Introducing the Stable Matching problem

The Gale-Shapley Algorithm

Optimality of The Gale-Shapley Algorithm

Outline

Introducing the Stable Matching problem

The Gale-Shapley Algorithm

Optimality of The Gale-Shapley Algorithm

The Stable Matching Problem: A Graph Perspective

Bipartite Graph:

- ▶ A bipartite graph G = (U, V, E) consists of:
 - ► Two disjoint sets of vertices: *U* and *V*.
 - ► Edges *E*: Connect vertices in *U* to vertices in *V*, representing potential pairings.

The Stable Matching Problem: A Graph Perspective

Bipartite Graph:

- ▶ A bipartite graph G = (U, V, E) consists of:
 - ► Two disjoint sets of vertices: *U* and *V*.
 - ► Edges *E*: Connect vertices in *U* to vertices in *V*, representing potential pairings.

Objective:

- Find a matching between U and V such that:
 - Each vertex is matched to at most one vertex from the other set.
 - The matching satisfies a property called stability (to be defined later).

Examples of applications

Stability is achieved using the **Gale-Shapley Algorithm**. This groundbreaking work led to the 2012 Nobel Prize in Economics for Lloyd Shapley and Alvin Roth.

Examples of applications

Stability is achieved using the **Gale-Shapley Algorithm**. This groundbreaking work led to the 2012 Nobel Prize in Economics for Lloyd Shapley and Alvin Roth.

Applications:

Assigning students to universities (e.g., Parcoursup in France).

parcoursup

Examples of applications

Stability is achieved using the **Gale-Shapley Algorithm**. This groundbreaking work led to the 2012 Nobel Prize in Economics for Lloyd Shapley and Alvin Roth.

Applications:

Assigning students to universities (e.g., Parcoursup in France).

parcoursup

Matching medical residents to hospitals.

Vocabulary and a Philosophical Caveat

Vocabulary:

➤ To stay consistent with the original paper [1] by Gale and Shapley, we will use the terminology of "men" and "women" to describe the matching process.

Vocabulary and a Philosophical Caveat

Vocabulary:

► To stay consistent with the original paper [1] by Gale and Shapley, we will use the terminology of "men" and "women" to describe the matching process.

Philosophical Caveat:

- ➤ As Vladimir Jankélévitch reminds us in [2]: 'L'amour ne veut rien savoir sur ce qu'il aime ; ce qu'il aime, c'est le centre de la personne vivante, parce que cette personne est pour lui une fin en soi, ipséité incomparable, mystère unique au monde.'
- ➤ Translation: "Love doesn't care to know what it loves; what it loves is the core of the living person, because this person is an end in itself, an incomparable selfhood, a unique mystery in the world."

Introducing the data

An example

Defining a Matching

The resulting couples: $\{(m,\Phi(m)), m\in\mathcal{M}\}$

An example of a Matching

9 / 20

Definition of an instability

Definition

A matching is said to be unstable if there exists a pair of individuals who would prefer to be matched with each other over their current partners.

An example:

An example of an instability

Defining a Stable Matching

Definition

A matching $\phi: \mathcal{H} \to \mathcal{W}$ is said to be **stable** if there is no instability within the pairs $\{m, \phi(m), m \in \mathcal{M}\}$.

An example:

How Do We Build Stable Matchings?

Question: How do we construct a matching that satisfies the **stability** property?

Naive Approach: What if we take a *laissez-faire* approach and resolve every instability **iteratively**?

For instance:

How Do We Build Stable Matchings?

- Iteratively addressing each instability might seem promising.
- ► However, could this process guarantee a **stable matching** in all cases?

Outline

Introducing the Stable Matching problem

The Gale-Shapley Algorithm

Optimality of The Gale-Shapley Algorithm

The Gale-Shapley Algorithm

Algorithm Gale-Shapley Algorithm

Input: Lists of preferences (men, women)

Output: Stable matching

1: All people start as free

2: **while** \exists free man m who hasn't proposed to all **do**

3: Pick such a man m

4: Let w be next woman on m's list

5: **if** w is free **then**

6: Engage m and w

else if w prefers m to current m' then

8: Engage m and w, free m'

9: **else**

7:

10: w rejects m

11: end if

12: end while

The Gale-Shapley Algorithm: an Example

Outline

Introducing the Stable Matching problem

The Gale-Shapley Algorithm

Optimality of The Gale-Shapley Algorithm

References

- [1] David Gale and Lloyd S Shapley. "College admissions and the stability of marriage". In: *The American Mathematical Monthly* 69.1 (1962), pp. 9–15.
- [2] Vladimir Jankélévitch and Béatrice Berlowitz. "Quelque part dans l'inachevé". In: (1978).

Thank you for your attention