Algorithms and Data Structures with Applications in Machine Learning

Graph Representation Learning

January 1, 2025

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Introduction to Graphs

Definition

A graph is defined as:

$$G = (V, E, u)$$

- ▶ **Nodes (Vertices):** The set *V* represents the nodes in the graph.
- ▶ **Edges:** The set $E \subseteq V \times V$ represents the connections (relationships) between the nodes.
- **Features:** Each node can have a feature vector u(v) representing its attributes.
- ► Labels: Nodes (or edges) can also have labels, which are used for tasks like classification.

Example Graph

Example: The graph below has 7 connected nodes $(V = \{0, 1, 2, 3, 4, 5, 6\})$ and their edges (E).

Example Graph: Node Labels

Example: Nodes in a graph can be associated with labels.

Blue nodes: Label 0 Red nodes: Label 1

Example Graph: Node Features

Example: Each node in the graph can have associated features. In this case: Each node has a feature vector of dimension 3.

Adjacency Matrix

Definition

The adjacency matrix A of a graph G = (V, E) is a matrix of size $|V| \times |V|$, where:

- ▶ A[i][j] = 1 if there is an edge between node i and node j.
- ▶ A[i][j] = 0 if there is no edge between node i and node j.

Example: A graph and its corresponding adjacency matrix:

Adjacency Matrix:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Weighted Adjacency Matrix

Definition

The adjacency matrix A can be extended to a weighted matrix W, where:

W[i][j] represents the weight of the edge between node i and node j.

Example: A graph and its a weighted adjacency matrix:

Weighted Matrix:

$$W = \begin{bmatrix} 0 & 0 & 2.1 & 0 & 0 & 1.5 & 0 \\ 0 & 0 & 3.4 & 1.8 & 0 & 0 & 0 \\ 2.1 & 3.4 & 0 & 0 & 2.5 & 0 & 0 \\ 0 & 1.8 & 0 & 0 & 0 & 0 & 4.2 \\ 0 & 0 & 2.5 & 0 & 0 & 1.2 & 3.0 \\ 1.5 & 0 & 0 & 0 & 1.2 & 0 & 0 \\ 0 & 0 & 0 & 4.2 & 3.0 & 0 & 0 \end{bmatrix}$$

Applications of Machine Learning on Graphs

Applications: Machine Learning on graphs enables a variety of tasks, including:

- ▶ **Node Prediction:** Predict properties or labels of nodes in a graph (e.g., user classification in social networks).
- ▶ Link Prediction: Predict the existence or strength of a connection between two nodes (e.g., recommendation systems).
- Graph Classification: Assign labels to entire graphs (e.g., chemical compound classification).
- Clustering: Group nodes into communities or clusters based on their properties or structure.

Objective: Node Classification

Objective: The objective of this course is two-fold:

- Learning a *D*-dimensional representation: Create embedding vectors for nodes that capture the structure of the graph.
- Node Classification:
 Use the learned embeddings to predict the labels of the nodes.

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Graph Structure-Based Embeddings: Introduction

Objective: We aim to learn a mapping:

$$f:V\to\mathbb{R}^D$$

where each node $u \in V$ is mapped to a D-dimensional vector $\mathbf{Z}_u \in \mathbb{R}^D$.

- In this section, we focus on leveraging the graph's **structure** to generate embedding vectors for nodes.
- ► The embeddings can be used for downstream tasks, such as node classification or link prediction.
- ▶ No use of feature vectors: We only use the graph topology (connections between nodes) to derive the embeddings.

Graph Structure-Based Embeddings: Objective

Graph Structure-Based Embeddings: Objective

Graph Structure-Based Embeddings: Objective

Deep Walk algorithm

Random Walks:

- ► A random walk is a sequence of steps through the graph, starting from a given node *u*, where each step randomly selects a neighboring node.
- The nodes visited during these walks represent the local neighborhood structure around u, denoted $\mathcal{N}_R(u)$
- ightharpoonup Here is an example of a random walk from node u to node v.

Determining Neighbors Using Random Walks

Algorithm Fixed-Length Random Walks

```
Require: Graph G = (V, E), starting node u, walk length L, number of walks N
```

Ensure: $\mathcal{N}_R(u)$ Multiset of nodes visited during random walks starting from u

- 1: Initialize an empty multiset of neighbors: neighbors \leftarrow []
- 2: **for** n = 1 to N **do** \triangleright Perform N random walks
- 3: Initialize current_node $\leftarrow u$
- 4: **for** l = 1 to L **do** \triangleright Walk for L steps
- 5: Sample a random neighbor $v \in \text{Neighbors}(\text{current_node})$
- 6: neighbors.append(v)
- 7: $current_node \leftarrow v$
- 8: end for
- 9: end for
- 10: return neighbors

Introducing Node2Vec: Biased Random Walks

- ► The Node2Vec algorithm modifies traditional random walks by introducing biases that control how the walk explores the graph.
- ▶ This bias allows us to interpolate between two extremes:
 - 1. **Local Behavior:** Tendency to return to previously visited nodes, capturing local neighborhood structures. This is controlled by the **return hyperparameter** *p*.
 - 2. **Global Behavior:** Tendency to explore new, distant nodes, capturing the global structure of the graph. This is controlled by the **in-out hyperparameter** *q*.
- ▶ By adjusting *p* and *q*, Node2Vec generates embeddings that can reflect different graph traversal strategies.
- ► This flexibility makes Node2Vec suitable for capturing diverse graph structures. (See Programming Session 6).

Introducing Node2Vec: Biased Random Walks

- ▶ When the walk moves from node *u* to *w*, the neighbors of *w* are categorized based on their distance to *u*.
- We define the following unnormalized probabilities:
 - 1. Nodes closer to u than w receive an unnormalized probability of $\frac{1}{n}$.
 - 2. Nodes farther from u than w receive an unnormalized probability of $\frac{1}{q}$.
 - 3. Nodes at the same distance as w from u receive an unnormalized probability of 1.
- These unnormalized probabilities are normalized to form a valid probability distribution, which guides the biased random walk.

Introducing Node2Vec: Biased Random Walks

Here is an example of assigning the unnormalized probabilities:

- ightharpoonup Starting at node u, the walk reaches node w.
- ► The probabilities assigned to w's neighbors depend on their distance to u, as described in the previous slide.

Determining Neighbors Using Biased Random Walks

Algorithm Biased Random Walks

Require: Graph G = (V, E), starting node u, walk length L, number of walks N, return parameter p, in-out parameter q

Ensure: $\mathcal{N}_R(u)$: Multiset of nodes visited during biased random walks starting from u

- 1: Initialize an empty multiset of neighbors: neighbors \leftarrow []
- 2: **for** n = 1 to N **do** \triangleright Perform N biased random walks
- 3: Initialize current_node $\leftarrow u$ and prev_node \leftarrow None
- 4: **for** l = 1 to L **do** \triangleright Walk for L steps
- 5: Compute probabilities using prev_node and current_node
- 6: Sample the next node v based on the these probabilities
- 7: neighbors.append(v)
- 8: Update prev_node and current_node
- 9: end for
- 10: end for
- 11: return neighbors

Training the Embedding Vectors

Defining the Loss Function:

- Now that we know how to define $\mathcal{N}_R(u)$, we can derive the loss function to train the embeddings.
- ▶ The objective is to minimize the following loss function:

$$\mathcal{L}(\theta) = -\sum_{u \in V} \sum_{v \in \mathcal{N}_R(u)} \log \left(\frac{\exp(\mathbf{Z}_u^{\top} \mathbf{Z}_v)}{\sum\limits_{n \in V} \exp(\mathbf{Z}_u^{\top} \mathbf{Z}_n)} \right)$$

Where:

- ▶ $\mathbf{Z}_i \in \mathbb{R}^D$ is the embedding vectors for nodes $i \in V$.
- ▶ $\theta = \{ \mathbf{Z}_i \mid i \in V \}$ represents all the embedding parameters to be learned.

Outline

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

From Node2Vec to Feature-Aware Embeddings

Node2vec recap:

- ► Node2Vec generates embeddings by combining graph topology and biased random walks.
- ► Focuses solely on the graph structure, without leveraging node-specific feature vectors.

Paradigm Shift:

- Our new objective is to incorporate both graph structure and node features into the embeddings.
- Instead of manually defining the impact of neighbors (e.g., via p and q), we aim for the model to learn the importance of different neighbors.

Message Passing Framework

Notations:

- ▶ $\mathbf{h}_{v}^{(k)}$: Learned embedding of node v at iteration k.
- $\triangleright \mathcal{N}(v)$: Set of neighbors of node v.

At each iteration, embeddings are refined by aggregating information from the local neighborhood and updating the node's representation.

Steps for One Iteration (k):

1. **Aggregation:** Gather information from neighbors of node v:

$$\mathbf{a}_{v}^{(k)} = f_{\mathsf{aggregate}}\left(\left\{\mathbf{h}_{u}^{(k-1)} \mid u \in \mathcal{N}(v)\right\}\right)$$

2. **Update:** Combine aggregated information and the previous embedding to compute the new embedding:

$$\mathbf{h}_{v}^{(k)} = f_{\mathsf{update}}(\mathbf{a}_{v}^{(k)}, \mathbf{h}_{v}^{(k-1)})$$

Message Passing Framework: The Algorithm

Algorithm Message Passing Framework

Require: Graph G = (V, E), node features $\{\mathbf{x}_v \mid v \in V\}$, number of iterations K, $f_{\text{aggregate}}$, f_{update}

Ensure: Final node embeddings $\{\mathbf{h}_{v}^{(K)} \mid v \in V\}$

- 1: Initialize embeddings: $\mathbf{h}_{v}^{(0)} \leftarrow \mathbf{x}_{v}$ for all $v \in V$
- 2: for k = 1 to K do
- 3: **for** each node $v \in V$ **do**

$$\begin{aligned} \mathbf{a}_{v}^{(k)} \leftarrow f_{\mathsf{aggregate}} \left(\{ \mathbf{h}_{u}^{(k-1)} \mid u \in \mathcal{N}(v) \} \right) \\ \mathbf{h}_{v}^{(k)} \leftarrow f_{\mathsf{update}}(\mathbf{a}_{v}^{(k)}, \mathbf{h}_{v}^{(k-1)}) \end{aligned}$$

- 4: end for
- 5: end for
- 6: **return** $\{\mathbf{h}_{v}^{(K)} \mid v \in V\}$

An Example: Graph Initialization with Feature Vectors

An Example: Aggregation Step

An Example: Update Step

An Example: Recap of Both Steps

$h_{ m Po}^{(k)}$	$h_{Tigress}^{(k)}$ $h_{Mantis}^{(k)}$ $h_{Crane}^{(k)}$ $h_{Viper}^{(k)}$ $h_{Ping}^{(k)}$ AGGREGATION STEP $a_{Po}^{(k)}$
	$a_{ m Po}^{(k)}$

UPDATE STEP

An Example: Final Embedding Vectors

GraphSAGE

Aggregation Function ($f_{aggregate}$):

$$\mathbf{a}_{v}^{(k)} = \frac{1}{\mathsf{deg}(v)} \sum_{u \in \mathcal{N}(v)} \mathbf{h}_{u}^{(k-1)}$$

Update Function (f_{update}):

$$\mathbf{h}_{v}^{(k)} = \sigma \left(W^{(k)} \cdot \left[\mathbf{h}_{v}^{(k-1)} \, \| \, \mathbf{a}_{v}^{(k)} \right] \right)$$

- ► Aggregates the mean of the neighbors' embeddings.
- Updates the embedding with a learned linear transformation using weights $W^{(k)}$ and a non-linear activation σ (e.g., ReLU).

Graph Convolutional Networks (GCN)

Aggregation Function ($f_{aggregate}$):

$$\mathbf{a}_{v}^{(k)} = \sum_{u \in \mathcal{N}(v) \cup \{v\}} \frac{\mathbf{h}_{u}^{(k-1)}}{\sqrt{\deg(v) \cdot \deg(u)}}$$

Update Function (f_{update}):

$$\mathbf{h}_{v}^{(k)} = \sigma \left(W^{(k)} \cdot \mathbf{a}_{v}^{(k)} \right)$$

- ▶ **Aggregation:** Aggregates information from neighbors and the node itself, normalized by the degree of both nodes.
- ▶ **Update:** Applies a linear transformation using $W^{(k)}$, followed by a non-linear activation σ (e.g., ReLU).

Graph Attention Networks (GAT) - Aggregation

Aggregation Function ($f_{aggregate}$):

$$\mathbf{a}_{v}^{(k)} = \sum_{u \in \mathcal{N}(v) \cup \{v\}} \alpha_{vu} \mathbf{h}_{u}^{(k-1)}$$

Where:

$$\alpha_{\textit{vu}} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\mathbf{a}^{\top}\left[\mathbf{h}_{\textit{v}}^{(k-1)}\|\mathbf{h}_{\textit{u}}^{(k-1)}\right]\right)\right)}{\sum_{w \in \mathcal{N}(\textit{v}) \cup \{\textit{v}\}} \exp\left(\mathsf{LeakyReLU}\left(\mathbf{a}^{\top}\left[\mathbf{h}_{\textit{v}}^{(k-1)}\|\mathbf{h}_{\textit{w}}^{(k-1)}\right]\right)\right)}$$

- ▶ **Aggregation:** Computes a weighted sum of neighbor embeddings using attention coefficients α_{vu} .
- ▶ Attention Coefficients α_{vu} : Learn to assign importance to each neighbor dynamically.

Graph Attention Networks (GAT) - Update

Update Function (f_{update}):

$$\mathbf{h}_{v}^{(k)} = \left\| \int_{k=1}^{K} \sigma\left(W_{k}^{(k)} \mathbf{a}_{v}^{(k)}\right) \right\|$$

- ► Multi-Head Attention: Combines results from K independent attention heads by concatenation (||).
- Non-Linearity: Applies a learned linear transformation $W_k^{(k)}$ followed by a non-linear activation σ (e.g., ReLU).
- GATs allow each node to focus on the most relevant neighbors dynamically, enabling better representation learning for tasks such as node classification or graph-level predictions.

Unsupervised Training

Objective: Train node embeddings $\mathbf{h}_{v}^{(K)}$ by leveraging the graph structure, without requiring labels.

The Loss Function:

$$\mathcal{L}(\theta) = -\sum_{u \in V} \sum_{v \in \mathcal{N}_R(u)} \log \left(\frac{\exp(\mathbf{h}_u^{(K)^\top} \mathbf{h}_v^{(K)})}{\sum_{n \in V} \exp(\mathbf{h}_u^{(K)^\top} \mathbf{h}_n^{(K)})} \right)$$

Where:

- ▶ $\mathbf{h}_{u}^{(K)}$: Final embedding of node u after K message-passing layers.
- \triangleright $\mathcal{N}_R(u)$: Neighborhood of u defined using some random walk strategy.
- We usually approximate the denominator using negative sampling.

Supervised Training: Node Classification

Objective: Predict the label of each node $v \in \mathcal{V}_{\mathsf{train}}$ using the GNN-generated embeddings $\mathbf{h}_{v}^{(K)}$.

The Loss Function (Cross-Entropy):

$$\mathcal{L} = -\sum_{v \in \mathcal{V}_{\text{train}}} \sum_{c=1}^{C} y_{v}^{c} \log \hat{y}_{v}^{c}$$

Where:

- $\triangleright y_v^c$: Ground-truth label (one-hot encoded) for node v.
- $\hat{y}_{v}^{c} = \operatorname{softmax}\left(W_{\operatorname{out}}\mathbf{h}_{v}^{(K)}\right)$: Predicted probability of class c, computed from the node embedding.

Programming Session: Node Classification

- During the programming session, we will work on the Cora dataset.
- ► The objective will be to build and train a **Graph Neural Network (GNN)** for node classification.

