
Algorithms and Data Structures with applications
in Machine Learning

Final Exam

January 3, 2025

The purpose of this exam is to provide you with an opportunity to demonstrate
your understanding of the topics covered in class and to apply the concepts we
have explored. Below are the instructions to help you succeed:

Instructions:

• Ensure your handwriting is clear and leave adequate space for readability.

• Be concise and precise in your answers.

• Show all calculations to allow for partial credit where applicable.

• Calculators are permitted.

The exam is structured as follows:

• An MCQ section with 10 multiple-choice questions, worth a total of 20
marks.

• A problem-solving section consisting of 4 exercises, each worth 20 marks.

• Although the exercises are interconnected, they can be tackled and solved
independently.

Section 1: Multiple Choice Questions (20 marks)
Q. 1 Recall the desired approximation for the GloVe model:

logXij ≈WT
i W̃j + bi + b̃j

The term WT
i W̃j represents the relationship between the word indexed by

i and the word indexed by j through their embeddings.
Assume that we have trained embeddings Wequity,Wmarket using this ap-
proximation and compare the dot product of these embeddings to the dot
product of one-hot vectors for the same words.
Which of the following best describes the comparison? a

a. The dot product WT
equityWmarket from embeddings is positive

and large, while the dot product of their one-hot vectors is 0. a

b. The dot product WT
equityWmarket from embeddings is 0, and the

dot product of their one-hot vectors is also 0.

c. The dot product WT
equityWmarket from embeddings is smaller

than the dot product of their one-hot vectors, which is positive.

d. The dot product WT
equityWmarket from embeddings is negative,

while the dot product of their one-hot vectors is 0.

Q. 2 Recall the cost function J for the GloVe algorithm:

J(θ) =

V∑
i=1

V∑
j=1

f(Xij)(logXij −WT
i W̃j − bi − b̃j)

2 (1)

The parameters to optimize are: a

• W ∈MV,D(R), the first embedding matrix,

• W̃ ∈MV,D(R), the second embedding matrix,

• b ∈ RV , the bias vector for W ,

• b̃ ∈ RV , the bias vector for W̃ .

What is the total number of parameters to train in the model, assuming
the vocabulary size is V and the embedding dimension is D? a

a. 2V D + 2V

b. V D + V

c. V 2 +D2

d. 2V +D

Q. 3 Which of the following equations correctly represents ∇W̃j
J(W̃j), the gra-

dient of the loss (eq 1), based on its shape? b

a. ∇W̃j
J(W̃j) = −2

∑V
i′=1 f(Xi′j)

(
logXi′j −WT

i′ W̃j − bi′ − b̃j

)
b. ∇W̃j

J(W̃j) = −2
∑V

i′=1 f(Xi′j)
(
logXi′j −WT

i′ W̃j − bi′ − b̃j

)
Wi′

c. ∇W̃j
J(W̃j) = −2

∑V
i′=1 f(Xi′j)

(
logXi′j −WT

i′ W̃j − bi′ − b̃j

)
Wi′W

T
i′

d. ∇W̃j
J(W̃j) = 0

1

Q. 4 In the context of stable matchings, a valid partner for a man m is defined
as: a

a. A woman w such that m and w are matched in at least one
stable matching.

b. The woman w at the top of m’s preference list.

c. Any woman w who accepts a proposal from m during the
Gale-Shapley algorithm.

d. A woman w such that w and m are unmatched in all stable
matchings.

Q. 5 Consider the following preferences of 5 men over 5 women, given as indices:
c

0 : [2,0, 1,3, 4]

1 : [1, 0,2, 3, 4]

2 : [3, 0,1,4, 2]

3 : [3, 1,2, 0, 4]

4 : [4, 3,2, 1, 0]

The preferences shown in bold indicate the valid partners for each man.
Using the Gale-Shapley algorithm (where men propose), the resulting stable
matches are:

a. {(0, 2), (1, 0), (2, 1), (3, 3), (4, 4)}

b. {(0, 3), (1, 1), (2, 0), (3, 2), (4, 4)}

c. {(0, 0), (1, 2), (2, 1), (3, 3), (4, 4)}

d. {(0, 0), (1, 2), (2, 1), (3, 0), (4, 3)}
Q. 6 Let Y be a random variable that can take values from the finite set

Y = {y1, y2, . . . , yn}. The probability distribution of Y is denoted as
p(y) = P(Y = y), where y ∈ Y. The entropy of Y is defined as:

H(Y) = −
∑
y∈Y

p(y) log2(p(y)).

Which of the following statements best explains the meaning of entropy? d

a. Entropy measures the likelihood of the most probable value of
Y .

b. Entropy represents the total uncertainty across all possible
outcomes of Y , without averaging.

c. Entropy is the measure of how many outcomes Y can possibly
take.

d. Entropy quantifies the average uncertainty reduction (in bits)
when the value of Y is revealed.

Q. 7 Decision Trees are known to have a tendency to overfit the training data,
especially when the tree is deep. Random Forest addresses this issue by: a

a. Combining multiple Decision Trees through bagging, where each
tree is trained on a random subset of the training data.

b. Training a single shallow Decision Tree with reduced depth to
minimize overfitting.

c. Using a single Decision Tree but regularizing it by pruning
unnecessary branches.

d. Combining multiple Decision Trees through boosting, where each
tree corrects the errors of the previous one.

Q. 8 Which of the following is not a hyperparameter of a Random Forest Classi-
fier? d

a. n_estimators

b. max_features

c. min_samples_leaf

d. learning_rate
Q. 9 Given a highly imbalanced dataset for a binary classification problem, with

99% of positive labels, which of the following evaluation metrics is not
suitable for assessing the model’s performance? c

a. Precision

b. Recall

c. Accuracy

d. F1-score

Q. 10 Which of the following statements about the AUC (Area Under the Curve)
is not true? d

2

a. AUC evaluates the model’s performance across all possible
decision thresholds.

b. AUC quantifies the likelihood that a randomly chosen positive
sample is assigned a higher score than a randomly chosen negative
sample.

c. AUC is the area under the ROC curve, where the ROC plots the
True Positive Rate (TPR) against the False Positive Rate (FPR).

d. AUC is sensitive to class imbalance and may significantly degrade
in performance when one class dominates.

Section 2: Node Classification Problem on the Cora
dataset (80 marks)

The Cora dataset represented in figure 1 is a benchmark dataset widely used for
graph-based machine learning tasks. It represents a citation network where each
node corresponds to a research paper and edges indicate citation relationships.
Each paper is labeled into one of seven distinct classes corresponding to specific
topics or fields of research.

Figure 1: The Cora Dataset

The feature representation of each node is a 1433-dimensional binary Bag-of-
Words (BoW) vector. Let xi ∈ {0, 1}1433 denote the BoW feature vector for the
ith paper, where each dimension indicates the presence (1) or absence (0) of a
specific word in the paper. For example, if the vocabulary contains the words
machine, learning, and graphs, and a paper contains only machine and graphs, its
BoW vector would have 1s in the positions corresponding to machine and graphs,
and 0 elsewhere. These vectors provide a sparse representation of the textual
content of the papers.

The dataset consists of 2708 nodes and 10556 edges, with each node having
1433 binary features. It is divided into training, validation, and test subsets.

In this exam, we will explore four key aspects of graph-based machine learning.
Each exercise builds on the concepts of representation learning, classification, and
optimization to solve practical problems.

• In the first exercise, we will focus on generating dense, semantic-rich D-
dimensional representations for each paper in the dataset. Using the GloVe
algorithm, the sparse binary Bag-of-Words vectors will be replaced with
embeddings learned from the co-occurrence patterns of words. This exercise
emphasizes the importance of capturing semantic relationships in textual
data.

• The second exercise will involve generating graph-based embeddings and
performing classification. First, we will use the Node2vec algorithm to
create embeddings that capture the structural properties of the citation
network. These embeddings will then be used as features for a Random
Forest classifier to predict the class labels of the nodes in the Cora dataset.
This exercise combines unsupervised graph representation learning with
supervised node classification.

• In the third exercise, we will employ a Graph Neural Network (GNN) to
learn embeddings for the nodes. Unlike the Node2vec approach, the GNN
will directly optimize the embeddings using cross-entropy loss while simulta-
neously performing node classification. This step integrates graph structure
and feature information to achieve higher classification accuracy.

• Finally, in the fourth exercise, we will address the stable matching problem.
Using the Gale-Shapley algorithm, reviewers will be assigned to research
papers based on predefined preferences.

Exercise 1 (Learning Word and Document Embeddings with GloVe).

In this exercise, we will explore the GloVe approach for generating dense,
semantic-rich word embeddings. The goal is to use the co-occurrence patterns
of words in the corpus to learn D-dimensional embedding vectors for each word.
These embeddings will then be used to derive an embedding vector for each
research paper.

3

We create the corpus by combining all the research papers in the dataset.
From this corpus, we extract a vocabulary and assign an index to each word. We
will use the term "word i" to refer to the word associated with index i ∈ {1, . . . ,V}
in this vocabulary. A co-occurrence matrix X is then constructed, where each
entry Xij represents the co-occurrence count of word i and word j within a given
context size.

1. Complete the blank in the Algorithm 2 to compute the co-occurrence matrix
X from the corpus:

Algorithm 1 Getting the Co-Occurrence Matrix

Require: sequences (list of lists of integers), context_size
Ensure: X (the co-occurrence matrix)
1: Initialize matrix X ∈MV,V(R) with zeros
2: . . . ▷ Fill in the blank
3: return X

Algorithm 2 Getting the Co-Occurrence Matrix

Require: sequences (list of lists of integers), context_size
Ensure: X (the co-occurrence matrix)
1: Initialize matrix X ∈MV,V(R) with zeros
2: for sequence in sequences do
3: for word w[i] of index i in sequence do
4: for word w[j] of index j in the context of w[i] do
5: X[w[i], w[j]]← X[w[i], w[j]] + 1

|i−j|
6: end for
7: end for
8: end for
9: return X

2. Derive the loss function for the GloVe model, starting from the desired
approximation:

logXij ≈WT
i W̃j + bi + b̃j .

where Wi and W̃j are the embedding vectors for the word i and the context
word j, respectively, and bi and b̃j are bias terms.

The loss function can then be written as follows:

J(θ) =

V∑
i=1

V∑
j=1

f(Xij)(logXij −WT
i W̃j − bi − b̃j)

2

We will minimize this loss function with respect to all parameters: W , W̃ ,
b, and b̃.

Two training methods can be applied: alternating least squares (ALS) and
gradient descent.

Let us consider i ∈ {1 . . . ,V}, the gradient of the loss function with respect
to the parameters Wi is provided to you:

∇WiJ(Wi) = −2
V∑

j′=1

f(Xij′)
(
logXij′ −WT

i W̃j′ − bi − b̃j′
)
W̃j′ (2)

3. Determine W
(t+1)
i , the updated value of Wi at iteration t + 1 using the

Alternating Least Squares method, as a function of the other parameters
(W̃

(t)
j)1≤j≤V , b

(t)
i , and (b̃

(t)
j)1≤j≤V at iteration t.

∇
W

(t+1)
i

J(Wi) = 0

⇐⇒ −2
V∑

j′=1

f(Xij′)
(
logXij′ −W

(t+1)T

i W̃
(t)
j′ − b

(t)
i − b̃

(t)
j′

)
W̃

(t)
j′ = 0

⇐⇒
V∑

j′=1

f(Xij′)
(
logXij′ − b

(t)
i − b̃

(t)
j′

)
W̃

(t)
j′ =

V∑
j′=1

f(Xij′)W
(t+1)T

i W̃
(t)
j′ W̃

(t)
j′

⇐⇒
V∑

j′=1

f(Xij′)
(
logXij′ − b

(t)
i − b̃

(t)
j′

)
W̃

(t)
j′ =

 V∑
j′=1

f(Xij′)W̃
(t)T

j′ W̃
(t)
j′

W
(t+1)
i

⇐⇒ W
(t+1)
i =

 V∑
j′=1

f(Xij′)W̃
(t)
j′ W̃

(t)T

j′

−1

·

 V∑
j′=1

f(Xij′)(logXij′ − b
(t)
i − b̃

(t)
j′)W̃

(t)
j′



Use the hint:

∀a, b ∈ Rn, (aT b) b = (b bT) a.

4. Complete the blank in Algorithm 4 for training the GloVe model using
gradient descent:

4

Algorithm 3 Training the GloVe Model Using Gradient Descent
Require: X, learning rate η, number of epochs Nepochs

Ensure: Trained parameters W , W̃ , b, b̃
1: Initialize W , W̃ , b, b̃ randomly
2: for t = 1, . . . , Nepochs do
3: . . . ▷ Fill in the blank
4: end for
5: return W , W̃ , b, b̃

Algorithm 4 Training the GloVe Model Using Gradient Descent
Require: X, learning rate η, number of epochs Nepochs

Ensure: Trained parameters W , W̃ , b, b̃
1: Initialize W , W̃ , b, b̃ randomly
2: for t = 1, . . . , Nepochs do
3: for i = 1, . . . , V do
4: Wi ←Wi − η∇Wi

J(W, W̃ , b, b̃)
5: end for
6: for j = 1, . . . , V do
7: W̃j ← W̃j − η∇W̃j

J(W, W̃ , b, b̃)
8: end for
9: for i = 1, . . . , V do

10: bi ← bi − η∇biJ(W, W̃ , b, b̃)
11: end for
12: for j = 1, . . . , V do
13: b̃j ← b̃j − η∇b̃j

J(W, W̃ , b, b̃)
14: end for
15: end for
16: return W , W̃ , b, b̃

Each research paper n ∈ {1, . . . , V } is represented by a feature vector
xn ∈ RD, which is computed as the average of the GloVe embedding vectors
Wwk

for all words wk in the paper:

xn =
1

|Wn|
∑

k∈Wn

Wwk
,

where Wn denotes the set of word indices in research paper n.

5. Explain two advantages of using the GloVe-based feature vectors over the
initial Bag-of-Words (BoW) feature vectors.

(a) Semantic Relationships: GloVe captures semantic relationships
and word contexts by leveraging co-occurrence statistics, mapping
similar words closer in the embedding space. BoW lacks this semantic
understanding.

(b) Efficiency: GloVe produces dense, low-dimensional vectors, reducing
memory and computational costs, whereas BoW representations are
sparse and high-dimensional.

Exercise 2 (Node Classification using Graph Based Embedding and Tree Based
Models).

In this exercise, we will focus on the Node2vec algorithm to create graph-based
embedding vectors for nodes.

After training the graph-based embeddings, we will apply a Random Forest
classifier to map these embeddings to one of the seven class labels in the dataset.

A key part of generating node embeddings in the Node2vec algorithm in-
volves sampling neighborhoods of nodes using biased random walks. The bias is
controlled by two hyperparameters:

• Return parameter (p): Controls the likelihood of immediately revisiting
a node in the walk.

• In-out parameter (q): Controls the likelihood of visiting nodes closer or
farther away from the starting node.

Refer to Figure 2. Suppose the current node is w, the starting node of the
random walk is u, and the neighbors of w are S1, S2, S3, and S4.

Figure 2: Sampling a neighbor in a biased Random Walk

5

1. Calculate the probabilities π1, π2, π3, and π4, where πi is the probability
of sampling neighbor Si in a biased random walk starting from node u (the
starting node) and currently at node w. Use the hyperparameters p and q
and the given context shown in Figure 2.
The normalized probabilities are calculated as follows:

Z = 1 +
1

q
+

1

p
+

1

q
.

The normalized probabilities are:

π1 =
1

Z
, π2 =

1
q

Z
, π3 =

1
p

Z
, π4 =

1
q

Z
.

Let u, v ∈ V denote nodes in the graph, where V is the set of all nodes.
For each node u, let Zu ∈ RD be its graph-based embedding vector. The
embeddings are designed such that graph similarity between nodes u and v
is reflected as similarity in the embedding space between Zu and Zv.

2. If the similarity between nodes u and v is defined as the probability of
visiting node v on a random walk starting from node u, what should be the
similarity in the embedding space between Zu and Zv?
The similarity in the embedding space between Zu and Zv is given by:

Similarity(Zu,Zv) =
exp(Z⊤

uZv)∑
n∈V

exp(Z⊤
uZn)

.

We denote NR(u) the set of nodes sampled via random walks starting from
u based on the biased strategy R

3. Derive the unsupervised loss function that translates graph similarity into
embedding similarity.
To translate graph similarity into embedding similarity, we aim to maximize
the probability of visiting neighbors in the graph using embedding-based
similarities. The loss function is derived as the negative log-likelihood of
the neighbors in the embedding space:

L(θ) = −
∑
u∈V

∑
v∈NR(u)

log

 exp(Z⊤
uZv)∑

n∈V

exp(Z⊤
uZn)

 .

This loss function ensures that embeddings of graph neighbors are similar
while maintaining the overall graph structure in the embedding space.
After obtaining the embeddings, we wish to apply a Random Forest model
to classify each paper into one of the 7 targets.

4. Derive the expression for the information gain at a decision tree node.

Use the following notations:

• Dp: The dataset at the parent node.

• Dleft, Dright: The datasets at the left and right child nodes.

• Np: The total number of samples at the parent node.

• Nleft, Nright: The total number of samples in the left and right child
nodes.

• I(D): The impurity measure of a dataset D.

5. We aim to tune the hyperparameters n_estimators and max_depth of the
Random Forest using Grid Search with cross-validation. Complete the
blanks in Algorithm 6:

Algorithm 5 Hyperparameter Tuning with Cross Validation
Require: Training data X, labels y, hyperparameter grid H, number of folds k
Ensure: Best hyperparameter combination
1: Initialize best_score← 0, best_params← None
2: for each (n_estimators,max_depth) in H do
3: scores← []
4: for fold = 1 to k do
5: Split X and y into training and validation sets: (Xtrain, ytrain, Xval, yval)
6: Train a Random Forest with nestimators and max_depth on

(Xtrain, ytrain)
7: Compute validation score and store:

scores.append(evaluate(model, X_val, y_val))
8: end for
9: avg_score← . . . ▷ Fill in the blank

10: if avg_score > best_score then
11: best_score← avg_score
12: . . . ▷ Fill in the blank
13: end if
14: end for
15: return best_params

6

Algorithm 6 Hyperparameter Tuning with Cross Validation
Require: Training data X, labels y, hyperparameter grid H, number of folds k
Ensure: Best hyperparameter combination
1: Initialize best_score← 0, best_params← None
2: for each (n_estimators,max_depth) in H do
3: scores← []
4: for fold = 1 to k do
5: Split X and y into training and validation sets: (Xtrain, ytrain, Xval, yval)
6: Train a Random Forest with nestimators and max_depth on

(Xtrain, ytrain)
7: Compute validation score and store:

scores.append(evaluate(model, X_val, y_val))
8: end for
9: avg_score←

∑
scores
k ▷ Fill in the blank

10: if avg_score > best_score then
11: best_score← avg_score
12: best_params← (n_estimators,max_depth) ▷ Fill in the blank
13: end if
14: end for
15: return best_params

Exercise 3 (Graph Neural Networks for Node Embedding and Classification).

In this exercise, we will use Graph Neural Networks (GNNs) to learn graph-
based embedding vectors for nodes in the graph.

These embeddings will be learned by leveraging the GloVe feature vectors
associated with each research paper and the graph structure. The embeddings
will then be used for node classification into the seven class labels.

The GNN operates on the principle of message passing, where information
from a node’s neighbors is aggregated and combined iteratively to update the
node’s embedding.

1. Complete the blanks in Algorithm 8 for message passing:

Algorithm 7 Message Passing Framework

Require: Graph G = (V,E), node features {xv | v ∈ V }, number of iterations
K, faggregate, fupdate

Ensure: Final node embeddings {h(K)
v | v ∈ V }

1: Initialize embeddings: . . . ▷ Fill in the blank
2: for k = 1 to K do
3: for each node v ∈ V do
4: . . . ▷ Fill in the blank
5: end for
6: end for
7: return {h(K)

v | v ∈ V } =0

Algorithm 8 Message Passing Framework

Require: Graph G = (V,E), node features {xv | v ∈ V }, number of iterations
K, faggregate, fupdate

Ensure: Final node embeddings {h(K)
v | v ∈ V }

1: Initialize embeddings: h
(0)
v ← xv for all v ∈ V ▷ Fill in the blank

2: for k = 1 to K do
3: for each node v ∈ V do
4: Compute aggregated messages:

a(k)v ← faggregate

(
{h(k−1)

u | u ∈ N (v)}
)

5: Update node embedding:

h(k)
v ← fupdate(a

(k)
v ,h(k−1)

v)

6: end for
7: end for
8: return {h(K)

v | v ∈ V }

The node embeddings are learned using a supervised loss function, specifi-
cally cross-entropy loss, defined as:

L(θ) = −
∑

v∈Vtrain

C∑
c=1

ycv log ŷ
c
v

Where:

• ycv: Ground-truth label (one-hot encoded) for node v.

7

• ŷcv = softmax
(
Wouth

(K)
v

)
: Predicted probability of class c, computed

from the node embedding.

After training, the performance of the GNN model will be compared to the
Node2vec and Random Forest method. Below are the confusion matrices
for the two methods:

• Confusion Matrix for Node2vec and Random Forest Model
The confusion matrix below shows the classification results for the
Node2vec and Random Forest model. The rows represent the actual
labels, and the columns represent the predicted labels (1 to 7).

Actual \Predicted 1 2 3 4 5 6 7
1 15 2 1 1 0 0 1
2 1 12 0 3 2 0 2
3 0 1 14 3 0 0 2
4 2 0 1 11 0 5 1
5 1 0 0 0 18 0 1
6 0 0 7 0 1 12 0
7 0 1 1 5 0 0 13

• Confusion Matrix for the GNN Model
The confusion matrix below shows the classification results for the
GNN model. The rows represent the actual labels, and the columns
represent the predicted labels (1 to 7).

Actual \Predicted 1 2 3 4 5 6 7
1 19 0 0 0 0 0 1
2 0 20 0 0 0 0 0
3 0 0 18 2 0 0 0
4 0 0 0 17 2 0 1
5 0 1 1 0 17 0 1
6 0 2 0 2 0 16 0
7 0 0 0 0 1 1 18

2. Calculate the accuracy of each model.

The accuracy is defined as:

Accuracy =
Correct Predictions
Total Predictions

.

For Model 1:

Accuracy1 =
15 + 12 + 14 + 11 + 18 + 12 + 13

140
= 0.679.

For Model 2:

Accuracy2 =
19 + 20 + 18 + 17 + 17 + 16 + 18

140
= 0.893.

3. Calculate the precision of each model.

The precision is defined as:

Precision =
TP

TP + FP
.

For Model 1:

Label TP FP FN Precision
1 15 4 5 0.789
2 12 4 8 0.750
3 14 10 6 0.583
4 11 12 9 0.478
5 18 3 2 0.857
6 12 5 8 0.706
7 13 7 7 0.650

Final Precision 0.688

For Model 2:

Label TP FP FN Precision
1 19 0 1 1.000
2 20 3 0 0.870
3 18 1 2 0.947
4 17 4 3 0.810
5 17 3 3 0.850
6 16 1 4 0.941
7 18 3 2 0.857

Final Precision 0.896

4. Calculate the recall of each model.

The recall is defined as:

Recall =
TP

TP + FN
.

8

For Model 1:

Label TP FP FN Recall
1 15 4 5 0.7500
2 12 4 8 0.6000
3 14 10 6 0.7000
4 11 12 9 0.5500
5 18 3 2 0.9000
6 12 5 8 0.6000
7 13 7 7 0.6500

Final Recall 0.679

For Model 2:

Label TP FP FN Recall
1 19 0 1 0.9500
2 20 3 0 1.0000
3 18 1 2 0.9000
4 17 4 3 0.8500
5 17 3 3 0.8500
6 16 1 4 0.8000
7 18 3 2 0.9000

Final Recall 0.893

5. Calculate the F1 score of each model.

The F1 score is defined as:

F1 = 2 · Precision · Recall
Precision + Recall

.

The results for each model are:

F11 = 0.683, F12 = 0.894.

Exercise 4 (Stable Matching for Reviewers and Papers).

In this exercise, we will use the Gale-Shapley algorithm to find a stable
matching between a set of reviewers (or researchers) and research papers. Each
researcher has a list of preferences over the papers, and each paper has a list of
preferences over the researchers. Preferences are expressed as scores ranging from
0 to 1, where a higher score indicates a higher preference.

Let R = {R1, R2, R3, R4, R5} denote the set of researchers and P =
{P1, P2, P3, P4, P5} denote the set of papers. The preferences of each researcher

Ri for each paper Pj are represented by a score Sij ∈ [0, 1]. Similarly, the prefer-
ences of each paper Pj for each researcher Ri are represented by a score S̃ji ∈ [0, 1].

Below are example preference scores for researchers and papers:

• Preferences of Researchers for Papers

Researcher P1 P2 P3 P4 P5

R1 0.9 0.7 0.8 0.6 0.5
R2 0.6 0.9 0.5 0.8 0.7
R3 0.7 0.6 0.9 0.5 0.8
R4 0.8 0.7 0.6 0.9 0.5
R5 0.5 0.8 0.7 0.6 0.9

• Preferences of Papers for Researchers

Paper R1 R2 R3 R4 R5

P1 0.8 0.9 0.7 0.6 0.5
P2 0.5 0.8 0.9 0.7 0.6
P3 0.9 0.6 0.8 0.5 0.7
P4 0.6 0.7 0.5 0.9 0.8
P5 0.7 0.5 0.8 0.6 0.9

1. Define instability in the context of stable matching. Does the Gale-Shapley
algorithm always result in a stable matching? Explain.
Definition of Instability: In the context of stable matching, an instability
occurs when there exists a pair (Ri, Pj) such that:

• Researcher Ri prefers paper Pj over their currently assigned paper,
and

• Paper Pj prefers researcher Ri over their currently assigned researcher.

Does the Gale-Shapley Algorithm Always Result in a Stable
Matching? Yes, the Gale-Shapley algorithm always results in a stable
matching.

2. Derive the rankings for each researcher over papers and for each paper over
researchers based on the given preference scores.
The rankings are derived by sorting the preference scores in descending
order for each researcher and each paper. Rankings of Researchers over
Papers:

Researcher Ranking of Papers
R1 P1 > P3 > P2 > P4 > P5

R2 P2 > P4 > P5 > P1 > P3

R3 P3 > P5 > P1 > P2 > P4

R4 P4 > P1 > P2 > P3 > P5

R5 P5 > P2 > P3 > P4 > P1

9

Rankings of Papers over Researchers:

Paper Ranking of Researchers
P1 R2 > R1 > R3 > R4 > R5

P2 R3 > R2 > R4 > R5 > R1

P3 R1 > R3 > R5 > R2 > R4

P4 R4 > R5 > R2 > R1 > R3

P5 R5 > R3 > R1 > R4 > R2

3. Complete the blanks in Algorithm 10:

Algorithm 9 Gale-Shapley Algorithm

Input: Lists of preferences (researchers, papers)
Output: Stable matching
1: All researchers start as free
2: while ∃ free researcher R who hasn’t proposed to all papers do
3: Pick such a researcher R
4: Let P be the next paper on R’s list
5: if P is free then
6: . . . ▷ Fill in the blank
7: else if P prefers R to current researcher R′ then
8: . . . ▷ Fill in the blank
9: else

10: . . . ▷ Fill in the blank
11: end if
12: end while

Algorithm 10 Gale-Shapley Algorithm

Input: Lists of preferences (researchers, papers)
Output: Stable matching
1: All researchers start as free
2: while ∃ free researcher R who hasn’t proposed to all papers do
3: Pick such a researcher R
4: Let P be the next paper on R’s list
5: if P is free then
6: Assign R to P
7: else if P prefers R to current researcher R′ then
8: Assign R to P , and make R′ free
9: else

10: R remains free and moves to the next paper on their list
11: end if
12: end while

4. Apply the Gale-Shapley algorithm to the provided preferences and derive
the final matching as pairs {(Researcher, Paper)}.

The final stable matching using the Gale-Shapley algorithm is:

{(R1, P1), (R2, P2), (R3, P3), (R4, P4), (R5, P5)}.

5. Discuss the optimality of the resulting couples compared to other valid
stable matchings. Is the solution optimal for both researchers and papers?
Why or why not?

The Gale-Shapley algorithm produces a stable matching, but the optimality
depends on which side of the matching is making the proposals. In this
case, researchers are the proposing side, so the resulting matching is optimal
for researchers. Each researcher is matched with their best valid partner
among all stable matchings. Papers are the receiving side, they receive the
least preferred valid partner among all stable matchings.

10

